Display options
Share it on

J Anim Sci Biotechnol. 2021 Apr 18;12(1):52. doi: 10.1186/s40104-021-00574-2.

Genetic basis of negative heterosis for growth traits in chickens revealed by genome-wide gene expression pattern analysis.

Journal of animal science and biotechnology

Chunning Mai, Chaoliang Wen, Zhiyuan Xu, Guiyun Xu, Sirui Chen, Jiangxia Zheng, Congjiao Sun, Ning Yang

Affiliations

  1. National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China.
  2. National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China. [email protected].
  3. National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China. [email protected].

PMID: 33865443 PMCID: PMC8053289 DOI: 10.1186/s40104-021-00574-2

Abstract

BACKGROUND: Heterosis is an important biological phenomenon that has been extensively utilized in agricultural breeding. However, negative heterosis is also pervasively observed in nature, which can cause unfavorable impacts on production performance. Compared with systematic studies of positive heterosis, the phenomenon of negative heterosis has been largely ignored in genetic studies and breeding programs, and the genetic mechanism of this phenomenon has not been thoroughly elucidated to date. Here, we used chickens, the most common agricultural animals worldwide, to determine the genetic and molecular mechanisms of negative heterosis.

RESULTS: We performed reciprocal crossing experiments with two distinct chicken lines and found that the body weight presented widely negative heterosis in the early growth of chickens. Negative heterosis of carcass traits was more common than positive heterosis, especially breast muscle mass, which was over - 40% in reciprocal progenies. Genome-wide gene expression pattern analyses of breast muscle tissues revealed that nonadditivity, including dominance and overdominace, was the major gene inheritance pattern. Nonadditive genes, including a substantial number of genes encoding ATPase and NADH dehydrogenase, accounted for more than 68% of differentially expressed genes in reciprocal crosses (4257 of 5587 and 3617 of 5243, respectively). Moreover, nonadditive genes were significantly associated with the biological process of oxidative phosphorylation, which is the major metabolic pathway for energy release and animal growth and development. The detection of ATP content and ATPase activity for purebred and crossbred progenies further confirmed that chickens with lower muscle yield had lower ATP concentrations but higher hydrolysis activity, which supported the important role of oxidative phosphorylation in negative heterosis for growth traits in chickens.

CONCLUSIONS: These findings revealed that nonadditive genes and their related oxidative phosphorylation were the major genetic and molecular factors in the negative heterosis of growth in chickens, which would be beneficial to future breeding strategies.

Keywords: Chicken; Gene expression patterns; Growth; Heterosis; Oxidative phosphorylation

References

  1. Nucleic Acids Res. 2019 Jan 8;47(D1):D427-D432 - PubMed
  2. Anim Genet. 2003 Dec;34(6):438-44 - PubMed
  3. PLoS One. 2013 Nov 05;8(11):e79780 - PubMed
  4. Mol Plant. 2013 May;6(3):716-28 - PubMed
  5. J Anim Breed Genet. 1993 Jan 12;110(1-6):423-8 - PubMed
  6. Nature. 2016 Sep 29;537(7622):629-633 - PubMed
  7. J Proteome Res. 2017 Oct 6;16(10):3477-3490 - PubMed
  8. Science. 1966 Jun 17;152(3729):1640-2 - PubMed
  9. Proc Natl Acad Sci U S A. 2012 May 1;109(18):7109-14 - PubMed
  10. Genetics. 2010 Sep;186(1):97-107 - PubMed
  11. Genes (Basel). 2019 Oct 18;10(10): - PubMed
  12. Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2313-8 - PubMed
  13. Genetics. 1936 Jul;21(4):375-97 - PubMed
  14. Poult Sci. 1991 Apr;70(4):709-18 - PubMed
  15. Annu Rev Genomics Hum Genet. 2009;10:313-32 - PubMed
  16. BMC Plant Biol. 2009 Aug 13;9:107 - PubMed
  17. Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):E7317-E7326 - PubMed
  18. Bioinformatics. 2014 Apr 1;30(7):923-30 - PubMed
  19. Plant Cell. 2003 Oct;15(10):2236-9 - PubMed
  20. Trends Plant Sci. 2007 Sep;12(9):427-32 - PubMed
  21. J Alzheimers Dis. 2015;43(3):775-84 - PubMed
  22. Science. 1908 Oct 2;28(718):454-5 - PubMed
  23. Poult Sci. 2002 Aug;81(8):1109-12 - PubMed
  24. Proc Natl Acad Sci U S A. 1917 Apr;3(4):310-2 - PubMed
  25. Int J Biol Sci. 2015 Nov 01;11(12):1348-62 - PubMed
  26. Int J Mol Sci. 2020 Feb 06;21(3): - PubMed
  27. Nat Rev Genet. 2007 May;8(5):382-93 - PubMed
  28. OMICS. 2012 May;16(5):284-7 - PubMed
  29. Poult Sci. 1997 Mar;76(3):437-44 - PubMed
  30. Genome Biol. 2014;15(12):550 - PubMed
  31. J Biol Chem. 2014 Jul 18;289(29):20012-25 - PubMed
  32. Plant Physiol. 2011 Aug;156(4):1905-20 - PubMed
  33. Proc Natl Acad Sci U S A. 2006 May 2;103(18):6805-10 - PubMed
  34. J Appl Genet. 2018 May;59(2):193-201 - PubMed
  35. BMC Genomics. 2017 Feb 16;18(1):181 - PubMed
  36. Proc Natl Acad Sci U S A. 1969 Jun;63(2):302-9 - PubMed
  37. J Dairy Sci. 2017 Aug;100(8):6337-6342 - PubMed
  38. Nat Rev Genet. 2012 Jul 18;13(8):552-64 - PubMed
  39. Genetics. 1992 Jun;131(2):461-9 - PubMed
  40. Anim Genet. 2005 Jun;36(3):210-5 - PubMed
  41. Poult Sci. 2003 Oct;82(10):1509-18 - PubMed
  42. Nat Biotechnol. 2015 Mar;33(3):290-5 - PubMed
  43. PLoS Genet. 2017 Sep 27;13(9):e1007019 - PubMed
  44. Mol Biol Rep. 2012 Apr;39(4):3773-84 - PubMed
  45. Proc Natl Acad Sci U S A. 2019 Mar 19;116(12):5653-5658 - PubMed
  46. Sci Rep. 2016 Mar 01;6:21124 - PubMed
  47. Nat Methods. 2015 Apr;12(4):357-60 - PubMed
  48. Front Zool. 2019 May 6;16:12 - PubMed
  49. PLoS Biol. 2007 Sep;5(9):e236 - PubMed
  50. Genetics. 2004 Aug;167(4):1791-9 - PubMed
  51. Proc Natl Acad Sci U S A. 2009 May 12;106(19):7695-701 - PubMed
  52. J Anim Breed Genet. 2018 Jun 21;: - PubMed
  53. J Anim Sci. 1989 Apr;67(4):911-9 - PubMed

Publication Types

Grant support