Display options
Share it on

Dose Response. 2021 Mar 30;19(1):15593258211001259. doi: 10.1177/15593258211001259. eCollection 2021.

Optimized Self-Nanoemulsifying Delivery System Based on Plant-Derived Oil Augments Alpha-Lipoic Acid Protective Effects Against Experimentally Induced Gastric Lesions.

Dose-response : a publication of International Hormesis Society

Shaimaa M Badr-Eldin, Usama A Fahmy, Hibah M Aldawsari, Osama A A Ahmed, Nabil A Alhakamy, Solomon Z Okbazghi, Mohamed A El-Moselhy, Adel F Alghaith, Aliaa Anter, Asmaa I Matouk, Wael Ali Mahdi, Sultan Alshehri, Rana Bakhaidar

Affiliations

  1. Faculty of Pharmacy, Department of Pharmaceutics, King Abdulaziz University, Jeddah, Saudi Arabia.
  2. Faculty of Pharmacy, Department of Pharmaceutics and Industrial Pharmacy, Cairo University, Cairo, Egypt.
  3. Advanced Drug Delivery Research Group, King Abdulaziz University, Jeddah, Saudi Arabia.
  4. Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia.
  5. King Abdulaziz University, Jeddah, Saudi Arabia.
  6. Global Analytical and Pharmaceutical Development, Alexion Pharmaceuticals, New Haven, CT, USA.
  7. Faculty of Pharmacy, Department of Pharmacology and Toxicology, Minia University, Minia, Egypt.
  8. Department of Pharmacology, School of Pharmacy, Ibn Sina National College, Jeddah, Saudi Arabia.
  9. Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
  10. Department of Pharmaceutical Sciences, College of Pharmacy, Almaarefa University, Riyadh, Saudi Arabia.

PMID: 33867893 PMCID: PMC8020240 DOI: 10.1177/15593258211001259

Abstract

Peptic ulcer disease is an injury of the alimentary tract that leads to a mucosal defect reaching the submucosa. Alpha-lipoic acid (ALA), a natural potent antioxidant, has been known as a gastroprotective drug yet its low bioavailability may restrict its therapeutic efficacy. This study aimed to formulate and optimize ALA using a self-nanoemulsifying drug delivery system (SNEDDS) with a size of nano-range, enhancing its absorption and augmenting its gastric ulcer protection efficacy. Three SNEDDS components were selected as the design factors: the concentrations of the pumpkin oil (X1, 10-30%), the surfactant tween 80 (X2, 20-50%), and the co-surfactant polyethylene glycol 200 (X3, 30-60%). The experimental design for the proposed mixture produced 16 formulations with varying ALA-SNEDDS formulation component percentages. The optimized ALA-SNEDDS formula was investigated for gastric ulcer protective effects by evaluating the ulcer index and by the determination of gastric mucosa oxidative stress parameters. Results revealed that optimized ALA-SNEDDS achieved significant improvement in gastric ulcer index in comparison with raw ALA. Histopathological findings confirmed the protective effect of the formulated optimized ALASNEDDS in comparison with raw ALA. These findings suggest that formulation of ALA in SNEDDS form would be more effective in gastric ulcer protection compared to pure ALA.

© The Author(s) 2021.

Keywords: COX2; alpha-lipoic acid; gastritis; indomethacin; nanotechnology; stomatitis

Conflict of interest statement

Declaration of Conflicting Interests: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

References

  1. J Pharm Pharmacol. 2010 Jan;62(1):85-90 - PubMed
  2. J Food Sci. 2012 Nov;77(11):H224-30 - PubMed
  3. AAPS PharmSciTech. 2012 Sep;13(3):967-77 - PubMed
  4. Headache. 2016 Feb;56(2):436-46 - PubMed
  5. Science. 1951 Jul 27;114(2952):93-4 - PubMed
  6. Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9561-6 - PubMed
  7. Can J Physiol Pharmacol. 2017 May;95(5):510-521 - PubMed
  8. J Adv Pharm Technol Res. 2011 Jan;2(1):9-16 - PubMed
  9. J Cardiovasc Pharmacol. 2009 Nov;54(5):391-8 - PubMed
  10. Biomed Rep. 2016 Nov;5(5):589-594 - PubMed
  11. Food Sci Biotechnol. 2018 Mar 1;27(4):1175-1184 - PubMed
  12. Expert Opin Drug Deliv. 2012 Oct;9(10):1305-17 - PubMed
  13. Biomed Pharmacother. 2016 Dec;84:470-475 - PubMed
  14. Inflammation. 2010 Aug;33(4):224-34 - PubMed
  15. Physiol Int. 2020 Jul 17;: - PubMed
  16. Expert Opin Drug Deliv. 2016 Dec;13(12):1653-1660 - PubMed
  17. Sci Rep. 2018 Mar 9;8(1):4280 - PubMed
  18. Drug Dev Ind Pharm. 2009 Nov;35(11):1305-11 - PubMed
  19. Pharmacol Rep. 2011;63(4):849-58 - PubMed
  20. AAPS PharmSciTech. 2015 Feb;16(1):53-8 - PubMed
  21. Pharmacology. 2013;91(5-6):267-74 - PubMed
  22. Clin Exp Pharmacol Physiol. 2020 Jul;47(7):1169-1181 - PubMed
  23. Curr Med Sci. 2019 Dec;39(6):920-928 - PubMed
  24. Physiol Rev. 2014 Apr;94(2):329-54 - PubMed
  25. Saudi Pharm J. 2020 Aug;28(8):916-926 - PubMed
  26. J Pharm Sci. 2020 Jul;109(7):2145-2155 - PubMed
  27. Biochem Pharmacol. 1995 Jun 29;50(1):123-6 - PubMed
  28. Ann Surg. 1993 Aug;218(2):111-9 - PubMed
  29. Int J Nanomedicine. 2020 Apr 15;15:2529-2539 - PubMed
  30. Pharmaceutics. 2020 Feb 07;12(2): - PubMed
  31. Inflamm Res. 2017 Nov;66(11):947-959 - PubMed
  32. Gen Pharmacol. 1997 Sep;29(3):315-31 - PubMed
  33. Diabetol Metab Syndr. 2014 Jul 28;6(1):80 - PubMed
  34. Baillieres Best Pract Res Clin Gastroenterol. 2000 Feb;14(1):75-96 - PubMed
  35. J Ethnopharmacol. 2006 Jan 3;103(1):59-65 - PubMed
  36. Med Clin North Am. 2002 Nov;86(6):1447-66, viii - PubMed
  37. Chem Pharm Bull (Tokyo). 1983 Feb;31(2):605-11 - PubMed
  38. Biomolecules. 2019 Aug 09;9(8): - PubMed
  39. Alcohol. 2016 Nov;56:21-28 - PubMed

Publication Types