Display options
Share it on

Biol Chem. 2021 Apr 29;402(9):1033-1045. doi: 10.1515/hsz-2021-0193. Print 2021 Aug 26.

Liver cell hydration and integrin signaling.

Biological chemistry

Michele Bonus, Dieter Häussinger, Holger Gohlke

Affiliations

  1. Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany.
  2. Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University Düsseldorf, Moorenstr. 5, D-40225 Düsseldorf, Germany.
  3. John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Wilhelm-Johnen-Str., D-52428 Jülich, Germany.
  4. Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., D-52428 Jülich, Germany.

PMID: 33915604 DOI: 10.1515/hsz-2021-0193

Abstract

Liver cell hydration (cell volume) is dynamic and can change within minutes under the influence of hormones, nutrients, and oxidative stress. Such volume changes were identified as a novel and important modulator of cell function. It provides an early example for the interaction between a physical parameter (cell volume) on the one hand and metabolism, transport, and gene expression on the other. Such events involve mechanotransduction (osmosensing) which triggers signaling cascades towards liver function (osmosignaling). This article reviews our own work on this topic with emphasis on the role of β

© 2021 Michele Bonus et al., published by De Gruyter, Berlin/Boston.

Keywords: bile acids; cell swelling; functional selectivity; mechanotransduction; molecular dynamics simulations; tauroursodeoxycholate

References

  1. Adair, B.D., Xiong, J.-P., Maddock, C., Goodman, S.L., Arnaout, M.A., and Yeager, M. (2005). Three-dimensional EM structure of the ectodomain of integrin αVβ3 in a complex with fibronectin. J. Cell Biol. 168: 1109–1118, https://doi.org/10.1083/jcb.200410068. - PubMed
  2. Arnaout, M.A., Mahalingam, B., and Xiong, J.-P. (2005). Integrin structure, allostery, and bidirectional signaling. Annu. Rev. Cell Dev. Biol. 21: 381–410, https://doi.org/10.1146/annurev.cellbio.21.090704.151217. - PubMed
  3. Bachmann, M., Kukkurainen, S., Hytönen, V.P., and Wehrle-Haller, B. (2019). Cell adhesion by integrins. Physiol. Rev. 99: 1655–1699, https://doi.org/10.1152/physrev.00036.2018. - PubMed
  4. Baquet, A., Gaussin, V., Bollen, M., Stalmans, W., and Hue, L. (1993). Mechanism of activation of liver acetyl-CoA carboxylase by cell swelling. Eur. J. Biochem. 217: 1083–1089, https://doi.org/10.1111/j.1432-1033.1993.tb18340.x. - PubMed
  5. Baquet, A., Hue, L., Meijer, A.J., van Woerkom, G.M., and Plomp, P.J.A.M. (1990). Swelling of rat hepatocytes stimulates glycogen synthesis. J. Biol. Chem. 265: 955–959, https://doi.org/10.1016/s0021-9258(19)40142-7. - PubMed
  6. Barczyk, M., Carracedo, S., and Gullberg, D. (2010). Integrins. Cell Tissue Res. 339: 269–280, https://doi.org/10.1007/s00441-009-0834-6. - PubMed
  7. Becker, S., Reinehr, R., Graf, D., vom Dahl, S., and Häussinger, D. (2007a). Hydrophobic bile salts induce hepatocyte shrinkage via NADPH oxidase activation. Cell. Physiol. Biochem. 19: 89–98, https://doi.org/10.1159/000099197. - PubMed
  8. Becker, S., Reinehr, R., Grether-Beck, S., Eberle, A., and Häussinger, D. (2007b). Hydrophobic bile salts trigger ceramide formation through endosomal acidification. Biol. Chem. 388: 185–196, https://doi.org/10.1515/bc.2007.021. - PubMed
  9. Bochen, A., Marelli, U.K., Otto, E., Pallarola, D., Mas-Moruno, C., Di Leva, F.S., Boehm, H., Spatz, J.P., Novellino, E., Kessler, H., et al.. (2013). Biselectivity of isoDGR peptides for fibronectin binding integrin subtypes alpha5beta1 and alphavbeta6: conformational control through flanking amino acids. J. Med. Chem. 56: 1509–1519, https://doi.org/10.1021/jm301221x. - PubMed
  10. Boini, K.M., Graf, D., Hennige, A.M., Koka, S., Kempe, D.S., Wang, K., Ackermann, T.F., Föller, M., Vallon, V., Pfeifer, K., et al.. (2009). Enhanced insulin sensitivity of gene-targeted mice lacking functional KCNQ1. Am. J. Physiol. 296: R1695–1701, https://doi.org/10.1152/ajpregu.90839.2008. - PubMed
  11. Bonus, M., Sommerfeld, A., Qvartskhava, N., Görg, B., Ludwig, B.S., Kessler, H., Gohlke, H., and Häussinger, D. (2020). Evidence for functional selectivity in TUDC- and norUDCA-induced signal transduction via alpha5beta1 integrin towards choleresis. Sci. Rep. 10: 5795, https://doi.org/10.1038/s41598-020-62326-y. - PubMed
  12. Cantore, M., Reinehr, R., Sommerfeld, A., Becker, M., and Häussinger, D. (2011). The Src family kinase Fyn mediates hyperosmolarity-induced Mrp2 and Bsep retrieval from canalicular membrane. J. Biol. Chem. 286: 45014–45029, https://doi.org/10.1074/jbc.m111.292896. - PubMed
  13. Chamberlin, M.E. and Strange, K. (1989). Anisosmotic cell volume regulation: a comparative view. Am. J. Physiol. 257: C159–173, https://doi.org/10.1152/ajpcell.1989.257.2.c159. - PubMed
  14. Faundez, V. and Hartzell, H.C. (2004). Intracellular chloride channels: determinants of function in the endosomal pathway. Sci. STKE 2004: re8, https://doi.org/10.1126/stke.2332004re8. - PubMed
  15. Gohlke, H., Schmitz, B., Sommerfeld, A., Reinehr, R., and Häussinger, D. (2013). α5β1-integrins are sensors for tauroursodeoxycholic acid in hepatocytes. Hepatology 57: 1117–1129, https://doi.org/10.1002/hep.25992. - PubMed
  16. Graf, J. and Häussinger, D. (1996). Ion transport in hepatocytes: mechanisms and correlations to cell volume, hormone actions and metabolism. J. Hepatol. 24: 53–77. - PubMed
  17. Hallbrucker, C., vom Dahl, S., Lang, F., and Häussinger, D. (1991). Control of hepatic proteolysis by amino acids. The role of cell volume. Eur. J. Biochem. 197: 717–724, https://doi.org/10.1111/j.1432-1033.1991.tb15963.x. - PubMed
  18. Hallbrucker, C., vom Dahl, S., Ritter, M., Lang, F., and Häussinger, D. (1994). Effects of urea on K+ fluxes and cell volume in perfused rat liver. Pflüger’s Arch. 428: 552–560, https://doi.org/10.1007/bf00374577. - PubMed
  19. Häussinger, D. (1996a). Regulation der Zellfunktion durch den Hydratationszustand. Naturwissenschaften 83: 264–271, https://doi.org/10.1007/bf01149599. - PubMed
  20. Häussinger, D. (1996b). The role of cellular hydration in the regulation of cell function. Biochem. J. 313: 697–710, https://doi.org/10.1042/bj3130697. - PubMed
  21. Häussinger, D., Hallbrucker, C., vom Dahl, S., Decker, S., Schweizer, U., Lang, F., and Gerok, W. (1991). Cell volume is a major determinant of proteolysis control in liver. FEBS Lett. 283: 70–72, https://doi.org/10.1016/0014-5793(91)80556-i. - PubMed
  22. Häussinger, D. and Kordes, C. (2017). Mechanisms of tauroursodeoxycholate-mediated hepatoprotection. Dig. Dis. 35: 224–231, https://doi.org/10.1159/000450915. - PubMed
  23. Häussinger, D., Kurz, A.K., Wettstein, M., Graf, D., vom Dahl, S., and Schliess, F. (2003). Involvement of integrins and Src in tauroursodeoxycholate-induced and swelling-induced choleresis. Gastroenterology 124: 1476–1487, https://doi.org/10.1016/s0016-5085(03)00274-9. - PubMed
  24. Häussinger, D. and Lang, F. (1991). Cell volume in the regulation of hepatic function: a mechanism for metabolic control. Biochim. Biophys. Acta Rev. Biomembr. 1071: 331–350, https://doi.org/10.1016/0304-4157(91)90001-d. - PubMed
  25. Häussinger, D. and Lang, F. (1992). Cell volume and hormone action. Trends Pharmacol. Sci. 13: 371–373, https://doi.org/10.1016/0165-6147(92)90114-l. - PubMed
  26. Häussinger, D., Roth, E., Lang, F., and Gerok, W. (1993). Cellular hydration state: an important determinant of protein catabolism in health and disease. Lancet 341: 1330–1332, https://doi.org/10.1016/0140-6736(93)90828-5. - PubMed
  27. Häussinger, D., Schliess, F., Dombrowski, F., and Vom Dahl, S. (1999). Involvement of p38MAPK in the regulation of proteolysis by liver cell hydration. Gastroenterology 116: 921–935, https://doi.org/10.1016/s0016-5085(99)70076-4. - PubMed
  28. Häussinger, D. and Sies, H. (Eds.) (2007). Osmosensing and osmosignaling. In: Methods in enzymology, Vol. 428. Academic Press, San Diego, CA. - PubMed
  29. Häussinger, D., Stehle, T., and Lang, F. (1990). Volume regulation in liver: further characterization by inhibitors and ionic substitutions. Hepatology 11: 243–254, https://doi.org/10.1002/hep.1840110214. - PubMed
  30. Hue, L. (1995). Regulation of liver carbohydrate and lipid metabolism by cell volume. Ann. Endocrinol. (Paris) 56: 599–601. - PubMed
  31. Hynes, R.O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell 110: 673–687, https://doi.org/10.1016/s0092-8674(02)00971-6. - PubMed
  32. Kadry, Y.A. and Calderwood, D.A. (2020). Chapter 22: Structural and signaling functions of integrins. Biochim. Biophys. Acta 1862: 183206, https://doi.org/10.1016/j.bbamem.2020.183206. - PubMed
  33. Katz, J., Golden, S., and Wals, P.A. (1976). Stimulation of hepatic glycogen synthesis by amino acids. Proc. Natl. Acad. Sci. USA 73: 3433–3437, https://doi.org/10.1073/pnas.73.10.3433. - PubMed
  34. Kechagia, J.Z., Ivaska, J., and Roca-Cusachs, P. (2019). Integrins as biomechanical sensors of the microenvironment. Nat. Rev. Mol. Cell Biol. 20: 457–473, https://doi.org/10.1038/s41580-019-0134-2. - PubMed
  35. Kim, C., Ye, F., and Ginsberg, M.H. (2011). Regulation of integrin activation. Annu. Rev. Cell Dev. Biol. 27: 321–345, https://doi.org/10.1146/annurev-cellbio-100109-104104. - PubMed
  36. Kubitz, R., D’Urso, D., Keppler, D., and Häussinger, D. (1997). Osmodependent dynamic localization of the multidrug resistance protein 2 in the rat hepatocyte canalicular membrane. Gastroenterology 113: 1438–1442, https://doi.org/10.1053/gast.1997.v113.pm9352844. - PubMed
  37. Kurz, A.K., Block, C., Graf, D., vom Dahl, S., Schliess, F., and Häussinger, D. (2000). Phosphoinositide 3-kinase-dependent Ras activation by tauroursodesoxycholate in rat liver. Biochem. J. 350 Pt 1: 207–213, https://doi.org/10.1042/bj3500207. - PubMed
  38. Kurz, A.K., Graf, D., Schmitt, M., vom Dahl, S., and Häussinger, D. (2001). Tauroursodesoxycholate-induced choleresis involves p38(MAPK) activation and translocation of the bile salt export pump in rats. Gastroenterology 121: 407–419, https://doi.org/10.1053/gast.2001.26262. - PubMed
  39. Lavoinne, A., Baquet, A., and Hue, L. (1987). Stimulation of glycogen synthesis and lipogenesis by glutamine in isolated rat hepatocytes. Biochem. J. 248: 429–437, https://doi.org/10.1042/bj2480429. - PubMed
  40. Liu, Y., Binz, J., Numerick, M.J., Dennis, S., Luo, G., Desai, B., MacKenzie, K.I., Mansfield, T.A., Kliewer, S.A., Goodwin, B., et al.. (2003). Hepatoprotection by the farnesoid X receptor agonist GW4064 in rat models of intra- and extrahepatic cholestasis. J. Clin. Invest. 112: 1678–1687, https://doi.org/10.1172/jci18945. - PubMed
  41. Maeda, T., Wurgler-Murphy, S.M., and Saito, H. (1994). A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369: 242–245, https://doi.org/10.1038/369242a0. - PubMed
  42. Mayer, P.G.K., Qvartskhava, N., Sommerfeld, A., Görg, B., and Häussinger, D. (2019). Regulation of plasma membrane localization of the Na+-taurocholate co-transporting polypeptide by glycochenodeoxycholate and tauroursodeoxycholate. Cell. Physiol. Biochem. 52: 1427–1445, https://doi.org/10.33594/000000100. - PubMed
  43. Meijer, A.J., Baquet, A., Gustafson, L., van Woerkom, G.M., and Hue, L. (1992). Mechanism of activation of liver glycogen synthase by swelling. J. Biol. Chem. 267: 5823–5828, https://doi.org/10.1016/s0021-9258(18)42627-0. - PubMed
  44. Minton, A.P., Colclasure, G.C., and Parker, J.C. (1992). Model for the role of macromolecular crowding in regulation of cellular volume. Proc. Natl. Acad. Sci. USA 89: 10504–10506, https://doi.org/10.1073/pnas.89.21.10504. - PubMed
  45. Morse, E.M., Brahme, N.N., and Calderwood, D.A. (2014). Integrin cytoplasmic tail interactions. Biochem 53: 810–820, https://doi.org/10.1021/bi401596q. - PubMed
  46. Mortimore, G.E. and Pösö, A.R. (1987). Intracellular protein catabolism and its control during nutrient deprivation and supply. Annu. Rev. Nutr. 7: 539–564, https://doi.org/10.1146/annurev.nu.07.070187.002543. - PubMed
  47. Naruse, K. (2018). Mechanomedicine. Biophys. Rev. 10: 1257–1262, https://doi.org/10.1007/s12551-018-0459-7. - PubMed
  48. Nishida, N., Xie, C., Shimaoka, M., Cheng, Y., Walz, T., and Springer, T.A. (2006). Activation of leukocyte beta2 integrins by conversion from bent to extended conformations. Immunity 25: 583–594, https://doi.org/10.1016/j.immuni.2006.07.016. - PubMed
  49. Noé, B., Schliess, F., Wettstein, M., Heinrich, S., and Häussinger, D. (1996). Regulation of taurocholate excretion by a hypo-osmolarity-activated signal transduction pathway in rat liver. Gastroenterology 110: 858–865, https://doi.org/10.1053/gast.1996.v110.pm8608896. - PubMed
  50. O’Connor, K.L. and Mercurio, A.M. (2001). Protein kinase A regulates Rac and is required for the growth factor-stimulated migration of carcinoma cells. J. Biol. Chem. 276: 47895–47900, https://doi.org/10.1074/jbc.M107235200. - PubMed
  51. Offensperger, W.-B., Offensperger, S., Stoll, B., Gerok, W., and Häussinger, D. (1994). Effects of anisotonic exposure on duck hepatitis B virus replication. Hepatology 20: 1–7, https://doi.org/10.1002/hep.1840200102. - PubMed
  52. Pagani, G. and Gohlke, H. (2018). On the contributing role of the transmembrane domain for subunit-specific sensitivity of integrin activation. Sci. Rep. 8: 5733, https://doi.org/10.1038/s41598-018-23778-5. - PubMed
  53. Paluschinski, M., Castoldi, M., Schöler, D., Bardeck, N., Oenarto, J., Görg, B., and Häussinger, D. (2019). Tauroursodeoxycholate protects from glycochenodeoxycholate-induced gene expression changes in perfused rat liver. Biol. Chem. 400: 1551–1565, https://doi.org/10.1515/hsz-2019-0204. - PubMed
  54. Parker, J.C. and Colclasure, G.C. (1992). Macromolecular crowding and volume perception in dog red cells. Mol. Cell. Biochem. 114: 9–11, https://doi.org/10.1007/bf00240291. - PubMed
  55. Reinehr, R., Becker, S., Braun, J., Eberle, A., Grether-Beck, S., and Häussinger, D. (2006). Endosomal acidification and activation of NADPH oxidase isoforms are upstream events in hyperosmolarity-induced hepatocyte apoptosis. J. Biol. Chem. 281: 23150–23166, https://doi.org/10.1074/jbc.m601451200. - PubMed
  56. Reinehr, R., Becker, S., Höngen, A., and Häussinger, D. (2004a). The Src family kinase yes triggers hyperosmotic activation of the epidermal growth factor receptor and CD95. J. Biol. Chem. 279: 23977–23987, https://doi.org/10.1074/jbc.m401519200. - PubMed
  57. Reinehr, R., Becker, S., Wettstein, M., and Häussinger, D. (2004b). Involvement of the Src family kinase yes in bile salt-induced apoptosis. Gastroenterology 127: 1540–1557, https://doi.org/10.1053/j.gastro.2004.08.056. - PubMed
  58. Reinehr, R., Gohlke, H., Sommerfeld, A., vom Dahl, S., and Häussinger, D. (2010a). Activation of integrins by urea in perfused rat liver. J. Biol. Chem. 285: 29348–29356, https://doi.org/10.1074/jbc.m110.155135. - PubMed
  59. Reinehr, R., Graf, D., Fischer, R., Schliess, F., and Häussinger, D. (2002). Hyperosmolarity triggers CD95 membrane trafficking and sensitizes rat hepatocytes toward CD95L-induced apoptosis. Hepatology 36: 602–614, https://doi.org/10.1053/jhep.2002.35447. - PubMed
  60. Reinehr, R. and Häussinger, D. (2004). Inhibition of bile salt-induced apoptosis by cyclic AMP involves serine/threonine phosphorylation of CD95. Gastroenterology 126: 249–262, https://doi.org/10.1053/j.gastro.2003.09.044. - PubMed
  61. Reinehr, R., Schliess, F., and Häussinger, D. (2003). Hyperosmolarity and CD95L trigger CD95/EGF receptor association and tyrosine phosphorylation of CD95 as prerequisites for CD95 membrane trafficking and DISC formation. FASEB J 17: 731–733, https://doi.org/10.1096/fj.02-0915fje. - PubMed
  62. Reinehr, R., Sommerfeld, A., and Häussinger, D. (2010b). Insulin induces swelling-dependent activation of the epidermal growth factor receptor in rat liver. J. Biol. Chem. 285: 25904–25912, https://doi.org/10.1074/jbc.m110.125781. - PubMed
  63. Reinehr, R., Sommerfeld, A., and Häussinger, D. (2013). The Src family kinases: distinct functions of c-Src, Yes, and Fyn in the liver. Biomol. Concepts 4: 129–142, https://doi.org/10.1515/bmc-2012-0047. - PubMed
  64. Santosa, D., Castoldi, M., Paluschinski, M., Sommerfeld, A., and Häussinger, D. (2015). Hyperosmotic stress activates the expression of members of the miR-15/107 family and induces downregulation of anti-apoptotic genes in rat liver. Sci. Rep. 5: 12292, https://doi.org/10.1038/srep12292. - PubMed
  65. Schliess, F. and Häussinger, D. (2003). Cell volume and insulin signaling. Int. Rev. Cytol. 225: 187–228, https://doi.org/10.1016/s0074-7696(05)25005-2. - PubMed
  66. Schliess, F., Kurz, A.K., vom Dahl, S., and Häussinger, D. (1997). Mitogen-activated protein kinases mediate the stimulation of bile acid secretion by tauroursodeoxycholate in rat liver. Gastroenterology 113: 1306–1314, https://doi.org/10.1053/gast.1997.v113.pm9322526. - PubMed
  67. Schliess, F., Reissmann, R., Reinehr, R., vom Dahl, S., and Häussinger, D. (2004). Involvement of integrins and src in insulin signaling toward autophagic proteolysis in rat liver. J. Biol. Chem. 279: 21294–21301, https://doi.org/10.1074/jbc.m313901200. - PubMed
  68. Schliess, F., Schreiber, R., and Häussinger, D. (1995). Activation of extracellular signal-regulated kinases Erk-1 and Erk-2 by cell swelling in H4IIE hepatoma cells. Biochem. J. 309: 13–17, https://doi.org/10.1042/bj3090013. - PubMed
  69. Schliess, F., vom Dahl, S., and Häussinger, D. (2001). Insulin resistance induced by loop diuretics and hyperosmolarity in perfused rat liver. Biol. Chem. 382: 1063–1069, https://doi.org/10.1515/bc.2001.133. - PubMed
  70. Schmitt, M., Kubitz, R., Lizun, S., Wettstein, M., and Häussinger, D. (2001). Regulation of the dynamic localization of the rat Bsep gene-encoded bile salt export pump by anisoosmolarity. Hepatology 33: 509–518, https://doi.org/10.1053/jhep.2001.22648. - PubMed
  71. Schreiber, R., Stoll, B., Lang, F., and Häussinger, D. (1994). Effects of aniso-osmolarity and hydroperoxides on intracellular pH in isolated rat hepatocytes as assessed by (2’,7’)-bis(carboxyethyl)-5(6)-carboxyfluorescein and fluorescein isothiocyanate-dextran fluorescence. Biochem. J. 303: 113–120, https://doi.org/10.1042/bj3030113. - PubMed
  72. Simon, D.I. (2011). Opening the field of integrin biology to “biased agonism”. Circ. Res. 109: 1199–1201, https://doi.org/10.1161/circresaha.111.257980. - PubMed
  73. Sommerfeld, A., Mayer, P.G.K., Cantore, M., and Häussinger, D. (2015a). Regulation of plasma membrane localization of the Na+-taurocholate cotransporting polypeptide (Ntcp) by hyperosmolarity and tauroursodeoxycholate. J. Biol. Chem. 290: 24237–24254, https://doi.org/10.1074/jbc.m115.666883. - PubMed
  74. Sommerfeld, A., Reinehr, R., and Häussinger, D. (2015b). Tauroursodeoxycholate protects rat hepatocytes from bile acid-induced apoptosis via β1-integrin- and protein kinase A-dependent mechanisms. Cell. Physiol. Biochem. 36: 866–883, https://doi.org/10.1159/000430262. - PubMed
  75. Springer, T.A., Zhu, J., and Xiao, T. (2008). Structural basis for distinctive recognition of fibrinogen gamma C peptide by the platelet integrin alphaIIbbeta3. J. Cell Biol. 182: 791–800, https://doi.org/10.1083/jcb.200801146. - PubMed
  76. Sun, Z., Costell, M., and Fässler, R. (2019). Integrin activation by talin, kindlin and mechanical forces. Nat. Cell Biol. 21: 25–31, https://doi.org/10.1038/s41556-018-0234-9. - PubMed
  77. Takagi, J., Petre, B.M., Walz, T., and Springer, T.A. (2002). Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell 110: 599–511, https://doi.org/10.1016/s0092-8674(02)00935-2. - PubMed
  78. Trauner, M., Halilbasic, E., Claudel, T., Steinacher, D., Fuchs, C.D., Moustafa, T., Pollheimer, M.J., Krones, E., Kienbacher, C., Traussnigg, S., et al.. (2015). Potential of nor-ursodeoxycholic acid in cholestatic and metabolic disorders. Dig. Dis. 33: 433–439, https://doi.org/10.1159/000371904. - PubMed
  79. Unoki, H., Takahashi, A., Kawaguchi, T., Hara, K., Horikoshi, M., Andersen, G., Ng, D.P.K., Holmkvist, J., Borch-Johnsen, K., Jørgensen, T., et al.. (2008). SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat. Genet. 40: 1098–1102, https://doi.org/10.1038/ng.208. - PubMed
  80. Violin, J.D. and Lefkowitz, R.J. (2007). Beta-arrestin-biased ligands at seven-transmembrane receptors. Trends Pharmacol. Sci. 28: 416–422, https://doi.org/10.1016/j.tips.2007.06.006. - PubMed
  81. Volpes, R., van den Oord, J.J., and Desmet, V.J. (1993). Integrins as differential cell lineage markers of primary liver tumors. Am. J. Pathol. 142: 1483–1492. - PubMed
  82. vom Dahl, S., Hallbrucker, C., Lang, F., Gerok, W., and Häussinger, D. (1991). Regulation of liver cell volume and proteolysis by glucagon and insulin. Biochem. J. 278: 771–777, https://doi.org/10.1042/bj2780771. - PubMed
  83. vom Dahl, S., Schliess, F., Reissmann, R., Görg, B., Weiergräber, O., Kocalkova, M., Dombrowski, F., and Häussinger, D. (2003). Involvement of integrins in osmosensing and signaling toward autophagic proteolysis in rat liver. J. Biol. Chem. 278: 27088–27095, https://doi.org/10.1074/jbc.M210699200. - PubMed
  84. Whittard, J.D. and Akiyama, S.K. (2001). Positive regulation of cell-cell and cell-substrate adhesion by protein kinase A. J. Cell Sci. 114: 3265–3272. - PubMed
  85. Xiong, J.-P., Stehle, T., Diefenbach, B., Zhang, R., Dunker, R., Scott, D.L., Joachimiak, A., Goodman, S.L., and Arnaout, M.A. (2001). Crystal structure of the extracellular segment of integrin αVβ3. Science 294: 339–345, https://doi.org/10.1126/science.1064535. - PubMed
  86. Xiong, J.-P., Stehle, T., Zhang, R., Joachimiak, A., Frech, M., Goodman, S.L., and Arnaout, M.A. (2002). Crystal structure of the extracellular segment of integrin αVβ3 in complex with an Arg-Gly-Asp ligand. Science 296: 151–155, https://doi.org/10.1126/science.1069040. - PubMed
  87. Yasuda, K., Miyake, K., Horikawa, Y., Hara, K., Osawa, H., Furuta, H., Hirota, Y., Mori, H., Jonsson, A., Sato, Y., et al.. (2008). Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat. Genet. 40: 1092–1097, https://doi.org/10.1038/ng.207. - PubMed
  88. Zhu, J., Zhu, J., and Springer, T.A. (2013). Complete integrin headpiece opening in eight steps. J. Cell Biol. 201: 1053–1068, https://doi.org/10.1083/jcb.201212037. - PubMed

Publication Types