Display options
Share it on

Hum Mol Genet. 2021 Jul 09;30(15):1371-1383. doi: 10.1093/hmg/ddab126.

Comparison of adaptive multiple phenotype association tests using summary statistics in genome-wide association studies.

Human molecular genetics

Colleen M Sitlani, Antoine R Baldassari, Heather M Highland, Chani J Hodonsky, Barbara McKnight, Christy L Avery

Affiliations

  1. Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101 USA.
  2. Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516 USA.
  3. Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908 USA.
  4. Department of Biostatistics, University of Washington, Seattle, WA 98195 USA.

PMID: 33949650 PMCID: PMC8283209 DOI: 10.1093/hmg/ddab126

Abstract

Genome-wide association studies have been successful mapping loci for individual phenotypes, but few studies have comprehensively interrogated evidence of shared genetic effects across multiple phenotypes simultaneously. Statistical methods have been proposed for analyzing multiple phenotypes using summary statistics, which enables studies of shared genetic effects while avoiding challenges associated with individual-level data sharing. Adaptive tests have been developed to maintain power against multiple alternative hypotheses because the most powerful single-alternative test depends on the underlying structure of the associations between the multiple phenotypes and a single nucleotide polymorphism (SNP). Here we compare the performance of six such adaptive tests: two adaptive sum of powered scores (aSPU) tests, the unified score association test (metaUSAT), the adaptive test in a mixed-models framework (mixAda) and two principal-component-based adaptive tests (PCAQ and PCO). Our simulations highlight practical challenges that arise when multivariate distributions of phenotypes do not satisfy assumptions of multivariate normality. Previous reports in this context focus on low minor allele count (MAC) and omit the aSPU test, which relies less than other methods on asymptotic and distributional assumptions. When these assumptions are not satisfied, particularly when MAC is low and/or phenotype covariance matrices are singular or nearly singular, aSPU better preserves type I error, sometimes at the cost of decreased power. We illustrate this trade-off with multiple phenotype analyses of six quantitative electrocardiogram traits in the Population Architecture using Genomics and Epidemiology (PAGE) study.

© The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: [email protected].

References

  1. Genet Epidemiol. 2019 Oct;43(7):800-814 - PubMed
  2. Am J Hum Genet. 2018 Jun 7;102(6):1185-1194 - PubMed
  3. PLoS Genet. 2011 Oct;7(10):e1002322 - PubMed
  4. PLoS One. 2013 Jul 05;8(7):e65245 - PubMed
  5. Nat Genet. 2015 Nov;47(11):1236-41 - PubMed
  6. Genetics. 2020 Aug;215(4):947-958 - PubMed
  7. Cancer Epidemiol Biomarkers Prev. 2018 Jan;27(1):75-85 - PubMed
  8. Nat Rev Genet. 2013 Jul;14(7):483-95 - PubMed
  9. Am J Hum Genet. 2015 Jan 8;96(1):21-36 - PubMed
  10. Biometrics. 2019 Dec;75(4):1076-1085 - PubMed
  11. Front Genet. 2015 Jun 30;6:229 - PubMed
  12. Genome Med. 2016 Jul 19;8(1):78 - PubMed
  13. Eur J Hum Genet. 2020 Mar;28(3):300-312 - PubMed
  14. Nat Med. 2016 Nov;22(11):1214-1219 - PubMed
  15. Nat Genet. 2018 May;50(5):693-698 - PubMed
  16. J Am Stat Assoc. 2019;114(527):975-990 - PubMed
  17. Science. 2018 Feb 9;359(6376):693-697 - PubMed
  18. Genet Epidemiol. 2015 Dec;39(8):651-63 - PubMed
  19. Biometrics. 2018 Mar;74(1):165-175 - PubMed
  20. Nucleic Acids Res. 2019 Jan 8;47(D1):D1005-D1012 - PubMed
  21. Hum Mol Genet. 2021 May 13;: - PubMed
  22. Nature. 2019 Jun;570(7762):514-518 - PubMed
  23. PLoS Genet. 2012;8(8):e1002907 - PubMed
  24. BMC Genomics. 2020 Mar 14;21(1):228 - PubMed
  25. Circ Genom Precis Med. 2020 Aug;13(4):e002680 - PubMed
  26. PLoS Genet. 2018 Feb 12;14(2):e1007139 - PubMed
  27. PLoS One. 2012;7(5):e34861 - PubMed
  28. BMC Bioinformatics. 2017 Jan 11;18(1):25 - PubMed
  29. Nat Genet. 2018 Feb;50(2):229-237 - PubMed
  30. Genet Epidemiol. 2013 Dec;37(8):759-67 - PubMed
  31. Am J Hum Genet. 2021 Jan 7;108(1):36-48 - PubMed
  32. Genetics. 2017 Aug;206(4):1779-1790 - PubMed
  33. Genet Epidemiol. 2018 Mar;42(2):134-145 - PubMed
  34. Nat Genet. 2019 Mar;51(3):445-451 - PubMed

Publication Types

Grant support