Display options
Share it on

JCI Insight. 2021 Jun 22;6(12). doi: 10.1172/jci.insight.147703.

Integration of spatial and single-cell transcriptomics localizes epithelial cell-immune cross-talk in kidney injury.

JCI insight

Ricardo Melo Ferreira, Angela R Sabo, Seth Winfree, Kimberly S Collins, Danielle Janosevic, Connor J Gulbronson, Ying-Hua Cheng, Lauren Casbon, Daria Barwinska, Michael J Ferkowicz, Xiaoling Xuei, Chi Zhang, Kenneth W Dunn, Katherine J Kelly, Timothy A Sutton, Takashi Hato, Pierre C Dagher, Tarek M El-Achkar, Michael T Eadon

Affiliations

  1. Department of Medicine and.
  2. Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA.

PMID: 34003797 PMCID: PMC8262485 DOI: 10.1172/jci.insight.147703

Abstract

Single-cell sequencing studies have characterized the transcriptomic signature of cell types within the kidney. However, the spatial distribution of acute kidney injury (AKI) is regional and affects cells heterogeneously. We first optimized coordination of spatial transcriptomics and single-nuclear sequencing data sets, mapping 30 dominant cell types to a human nephrectomy. The predicted cell-type spots corresponded with the underlying histopathology. To study the implications of AKI on transcript expression, we then characterized the spatial transcriptomic signature of 2 murine AKI models: ischemia/reperfusion injury (IRI) and cecal ligation puncture (CLP). Localized regions of reduced overall expression were associated with injury pathways. Using single-cell sequencing, we deconvoluted the signature of each spatial transcriptomic spot, identifying patterns of colocalization between immune and epithelial cells. Neutrophils infiltrated the renal medulla in the ischemia model. Atf3 was identified as a chemotactic factor in S3 proximal tubules. In the CLP model, infiltrating macrophages dominated the outer cortical signature, and Mdk was identified as a corresponding chemotactic factor. The regional distribution of these immune cells was validated with multiplexed CO-Detection by indEXing (CODEX) immunofluorescence. Spatial transcriptomic sequencing complemented single-cell sequencing by uncovering mechanisms driving immune cell infiltration and detection of relevant cell subpopulations.

Keywords: Expression profiling; Mouse models; Nephrology

References

  1. Science. 2019 Mar 29;363(6434):1463-1467 - PubMed
  2. J Am Soc Nephrol. 2019 May;30(5):767-781 - PubMed
  3. PLoS One. 2014 Sep 05;9(9):e106647 - PubMed
  4. iScience. 2019 Oct 25;20:402-414 - PubMed
  5. Science. 2018 May 18;360(6390):758-763 - PubMed
  6. Nat Biotechnol. 2018 Jun;36(5):411-420 - PubMed
  7. PLoS Biol. 2019 Feb 21;17(2):e3000152 - PubMed
  8. Cell. 2019 Jun 13;177(7):1888-1902.e21 - PubMed
  9. J Am Soc Nephrol. 2015 Jun;26(6):1347-62 - PubMed
  10. Science. 2018 Aug 10;361(6402):594-599 - PubMed
  11. Cell. 2020 Dec 10;183(6):1665-1681.e18 - PubMed
  12. Cell. 2019 Dec 12;179(7):1647-1660.e19 - PubMed
  13. Nucleic Acids Res. 2021 May 21;49(9):e50 - PubMed
  14. J Am Soc Nephrol. 2020 Oct;31(10):2341-2354 - PubMed
  15. Nat Commun. 2019 Jun 27;10(1):2832 - PubMed
  16. Sci Rep. 2018 Jun 4;8(1):8539 - PubMed
  17. Science. 2016 Jul 1;353(6294):78-82 - PubMed
  18. J Am Soc Nephrol. 2006 Jun;17(6):1503-20 - PubMed
  19. Proc Natl Acad Sci U S A. 2019 Sep 24;116(39):19619-19625 - PubMed
  20. Nature. 2021 Jan;589(7841):281-286 - PubMed
  21. Bioessays. 2020 Oct;42(10):e1900221 - PubMed
  22. OMICS. 2012 May;16(5):284-7 - PubMed
  23. Am J Kidney Dis. 2020 Sep;76(3):350-360 - PubMed
  24. Cell. 2018 Aug 9;174(4):968-981.e15 - PubMed
  25. Eur Rev Med Pharmacol Sci. 2018 Sep;22(17):5659-5664 - PubMed
  26. Cell Commun Signal. 2014 Jan 14;12:6 - PubMed
  27. Blood. 2014 Mar 27;123(13):2084-93 - PubMed
  28. Science. 2019 Apr 5;364(6435):89-93 - PubMed
  29. Elife. 2021 Jan 15;10: - PubMed
  30. J Am Soc Nephrol. 2019 Aug;30(8):1358-1364 - PubMed
  31. Genome Med. 2019 Jan 23;11(1):3 - PubMed
  32. J Am Soc Nephrol. 2016 Nov;27(11):3356-3367 - PubMed
  33. J Clin Invest. 2000 Feb;105(4):489-95 - PubMed
  34. Nat Biotechnol. 2018 Oct 29;: - PubMed
  35. J Am Soc Nephrol. 2017 Oct;28(10):2856-2865 - PubMed
  36. Pathology. 2017 Apr;49(3):247-258 - PubMed
  37. Development. 2019 Jun 12;146(12): - PubMed
  38. Science. 2014 Mar 21;343(6177):1360-3 - PubMed
  39. Int J Mol Sci. 2018 Jul 13;19(7): - PubMed
  40. Cancer Res. 2018 Oct 15;78(20):5970-5979 - PubMed
  41. J Am Soc Nephrol. 2015 Sep;26(9):2172-82 - PubMed
  42. J Am Soc Nephrol. 2019 Apr;30(4):533-545 - PubMed
  43. Nat Rev Nephrol. 2020 Feb;16(2):73-74 - PubMed
  44. Am J Physiol Renal Physiol. 2008 Aug;295(2):F534-44 - PubMed
  45. Bioinformatics. 2013 Jan 1;29(1):15-21 - PubMed
  46. Kidney Int. 2009 Apr;75(7):689-98 - PubMed
  47. Development. 2018 Aug 30;145(16): - PubMed
  48. Nat Commun. 2018 Jun 20;9(1):2419 - PubMed
  49. Sci Adv. 2021 Feb 10;7(7): - PubMed
  50. JCI Insight. 2019 Jan 10;4(1): - PubMed
  51. J Am Soc Nephrol. 2018 Mar;29(3):841-856 - PubMed
  52. J Am Soc Nephrol. 2019 Jan;30(1):23-32 - PubMed
  53. Dev Cell. 2019 Nov 4;51(3):399-413.e7 - PubMed
  54. Nat Immunol. 2019 Jul;20(7):902-914 - PubMed
  55. Nature. 2019 Apr;568(7751):235-239 - PubMed
  56. J Clin Invest. 2010 Jan;120(1):331-42 - PubMed
  57. J Am Soc Nephrol. 2018 Aug;29(8):2069-2080 - PubMed
  58. Nat Commun. 2019 Nov 29;10(1):5462 - PubMed
  59. Nat Rev Nephrol. 2020 Feb;16(2):112-128 - PubMed
  60. Mol Biosyst. 2016 Feb;12(2):477-9 - PubMed
  61. Am J Pathol. 2012 Sep;181(3):818-28 - PubMed
  62. Nat Methods. 2019 Oct;16(10):987-990 - PubMed
  63. J Am Soc Nephrol. 2018 Jan;29(1):104-117 - PubMed
  64. J Am Soc Nephrol. 2020 Jan;31(1):118-138 - PubMed

Publication Types

Grant support