Display options
Share it on

Genome Biol. 2021 May 05;22(1):136. doi: 10.1186/s13059-021-02350-x.

Intergenic RNA mainly derives from nascent transcripts of known genes.

Genome biology

Federico Agostini, Julian Zagalak, Jan Attig, Jernej Ule, Nicholas M Luscombe

Affiliations

  1. The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK. [email protected].
  2. The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
  3. Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
  4. UCL Genetics Institute, Department of Genetics, Environment and Evolution, University College London, Gower Street, London, WC1E 6BT, UK.
  5. Okinawa Institute of Science & Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan.

PMID: 33952325 PMCID: PMC8097831 DOI: 10.1186/s13059-021-02350-x

Abstract

BACKGROUND: Eukaryotic genomes undergo pervasive transcription, leading to the production of many types of stable and unstable RNAs. Transcription is not restricted to regions with annotated gene features but includes almost any genomic context. Currently, the source and function of most RNAs originating from intergenic regions in the human genome remain unclear.

RESULTS: We hypothesize that many intergenic RNAs can be ascribed to the presence of as-yet unannotated genes or the "fuzzy" transcription of known genes that extends beyond the annotated boundaries. To elucidate the contributions of these two sources, we assemble a dataset of more than 2.5 billion publicly available RNA-seq reads across 5 human cell lines and multiple cellular compartments to annotate transcriptional units in the human genome. About 80% of transcripts from unannotated intergenic regions can be attributed to the fuzzy transcription of existing genes; the remaining transcripts originate mainly from putative long non-coding RNA loci that are rarely spliced. We validate the transcriptional activity of these intergenic RNAs using independent measurements, including transcriptional start sites, chromatin signatures, and genomic occupancies of RNA polymerase II in various phosphorylation states. We also analyze the nuclear localization and sensitivities of intergenic transcripts to nucleases to illustrate that they tend to be rapidly degraded either on-chromatin by XRN2 or off-chromatin by the exosome.

CONCLUSIONS: We provide a curated atlas of intergenic RNAs that distinguishes between alternative processing of well-annotated genes from independent transcriptional units based on the combined analysis of chromatin signatures, nuclear RNA localization, and degradation pathways.

Keywords: Gene annotation; RNA; RNA-seq; Transcription

References

  1. PLoS Biol. 2010 May 11;8(5):e1000384 - PubMed
  2. Trends Cell Biol. 2019 Aug;29(8):647-659 - PubMed
  3. Genes Dev. 2014 Sep 15;28(18):1983-8 - PubMed
  4. Nature. 2014 Mar 27;507(7493):462-70 - PubMed
  5. Genome Biol. 2016 Feb 16;17:28 - PubMed
  6. PLoS Genet. 2013 Jun;9(6):e1003569 - PubMed
  7. Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):E8362-E8371 - PubMed
  8. Genome Res. 2008 Aug;18(8):1224-37 - PubMed
  9. Mol Cell. 2013 Nov 21;52(4):473-84 - PubMed
  10. PLoS Comput Biol. 2013;9(8):e1003118 - PubMed
  11. Genes Dev. 1988 Apr;2(4):440-52 - PubMed
  12. Cell. 2013 Jul 3;154(1):26-46 - PubMed
  13. Mol Cell. 2016 Apr 7;62(1):104-10 - PubMed
  14. PLoS Biol. 2010 May 18;8(5):e1000371 - PubMed
  15. Genome Res. 2016 Jul;26(7):896-907 - PubMed
  16. Cell Rep. 2015 Aug 18;12(7):1089-98 - PubMed
  17. Nature. 2014 Mar 27;507(7493):455-461 - PubMed
  18. Cell. 2015 May 7;161(4):774-89 - PubMed
  19. Genes Dev. 2007 Jul 15;21(14):1779-89 - PubMed
  20. Cell. 2018 Aug 23;174(5):1067-1081.e17 - PubMed
  21. Genetics. 2017 Oct;207(2):357-367 - PubMed
  22. Science. 2015 Nov 20;350(6263):978-81 - PubMed
  23. PLoS Genet. 2016 Sep 15;12(9):e1006313 - PubMed
  24. Trends Cell Biol. 2018 Dec;28(12):999-1013 - PubMed
  25. Genes Dev. 2018 Jan 15;32(2):127-139 - PubMed
  26. Cell Rep. 2014 Mar 13;6(5):906-15 - PubMed
  27. Cell. 2014 Dec 18;159(7):1538-48 - PubMed
  28. Mol Cell. 2008 Oct 24;32(2):232-46 - PubMed
  29. Nat Struct Mol Biol. 2013 Aug;20(8):923-8 - PubMed
  30. Mol Syst Biol. 2017 Aug 23;13(8):937 - PubMed
  31. Nature. 2004 Nov 25;432(7016):522-5 - PubMed
  32. Nat Protoc. 2013 Sep;8(9):1765-86 - PubMed
  33. Cell. 2015 Apr 23;161(3):526-540 - PubMed
  34. Cell. 2007 Jun 29;129(7):1311-23 - PubMed
  35. Noncoding RNA. 2018 Jan 30;4(1): - PubMed
  36. Nat Biotechnol. 2015 Mar;33(3):290-5 - PubMed
  37. Biochemistry. 2014 Apr 1;53(12):1882-98 - PubMed
  38. Nature. 2011 Apr 7;472(7341):120-4 - PubMed
  39. Nature. 2016 Nov 17;539(7629):433-436 - PubMed
  40. Sci Data. 2017 Aug 29;4:170107 - PubMed
  41. Nucleic Acids Res. 2018 Jan 4;46(D1):D308-D314 - PubMed
  42. Nature. 2012 Sep 6;489(7414):57-74 - PubMed
  43. Nucleic Acids Res. 2016 Sep 19;44(16):7511-26 - PubMed
  44. Nucleic Acids Res. 2018 Aug 21;46(14):7070-7084 - PubMed
  45. Nature. 2016 Nov 17;539(7629):452-455 - PubMed
  46. Cell Rep. 2017 Nov 28;21(9):2433-2446 - PubMed
  47. Nat Rev Mol Cell Biol. 2015 Mar;16(3):190-202 - PubMed
  48. Trends Biochem Sci. 2017 Dec;42(12):977-989 - PubMed
  49. Nature. 2017 Aug 17;548(7667):343-346 - PubMed
  50. Nat Methods. 2012 Mar 04;9(4):357-9 - PubMed
  51. Genome Res. 2012 Sep;22(9):1760-74 - PubMed
  52. Genome Biol. 2018 Nov 28;19(1):208 - PubMed
  53. BMC Bioinformatics. 2015 Jul 19;16:224 - PubMed
  54. Bioinformatics. 2013 Jan 1;29(1):15-21 - PubMed
  55. F1000Res. 2020 Apr 28;9:304 - PubMed
  56. Cell. 2017 May 4;169(4):679-692.e14 - PubMed
  57. Nature. 2013 Jul 18;499(7458):360-3 - PubMed
  58. Science. 2008 Dec 19;322(5909):1851-4 - PubMed
  59. Life Sci Alliance. 2018 Jul 31;1(4):e201800124 - PubMed
  60. Science. 2010 Aug 6;329(5992):689-93 - PubMed
  61. Nucleic Acids Res. 2014 Jul;42(Web Server issue):W187-91 - PubMed
  62. Science. 2008 Oct 31;322(5902):750-6 - PubMed
  63. Cell. 2018 Jan 25;172(3):393-407 - PubMed
  64. Mol Cell. 2015 Oct 15;60(2):256-67 - PubMed
  65. Nature. 2010 May 13;465(7295):182-7 - PubMed
  66. Bioinformatics. 2015 Apr 1;31(7):1127-9 - PubMed
  67. Nature. 2009 Mar 12;458(7235):223-7 - PubMed
  68. EMBO J. 2015 Mar 4;34(5):653-68 - PubMed
  69. Mol Cell. 2015 Aug 6;59(3):449-61 - PubMed
  70. Nat Rev Mol Cell Biol. 2017 May;18(5):331-337 - PubMed
  71. Bioinformatics. 2009 Aug 15;25(16):2078-9 - PubMed
  72. Nat Rev Mol Cell Biol. 2018 Mar;19(3):143-157 - PubMed
  73. Mol Cell. 2017 Jan 5;65(1):25-38 - PubMed
  74. Genes Dev. 2012 Oct 1;26(19):2119-37 - PubMed
  75. Nat Struct Mol Biol. 2013 Nov;20(11):1250-7 - PubMed
  76. Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45 - PubMed
  77. Nat Struct Mol Biol. 2013 Nov;20(11):1258-64 - PubMed
  78. Nat Rev Genet. 2009 Dec;10(12):833-44 - PubMed
  79. Nat Rev Genet. 2011 Jan;12(1):7-18 - PubMed

Publication Types

Grant support