Display options
Share it on

Cell Rep. 2021 May 18;35(7):109137. doi: 10.1016/j.celrep.2021.109137.

The histone H3K9M mutation synergizes with H3K14 ubiquitylation to selectively sequester histone H3K9 methyltransferase Clr4 at heterochromatin.

Cell reports

Chun-Min Shan, Jin-Kwang Kim, Jiyong Wang, Kehan Bao, Yadong Sun, Huijie Chen, Jia-Xing Yue, Alessandro Stirpe, Zhiguo Zhang, Chao Lu, Thomas Schalch, Gianni Liti, Peter L Nagy, Liang Tong, Feng Qiao, Songtao Jia

Affiliations

  1. Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
  2. Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA.
  3. Department of Pathology, Columbia University, New York, NY 10068, USA.
  4. Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice 06107, France.
  5. Leicester Institute for Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, UK.
  6. Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
  7. Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
  8. Department of Biological Sciences, Columbia University, New York, NY 10027, USA. Electronic address: [email protected].

PMID: 34010645 PMCID: PMC8167812 DOI: 10.1016/j.celrep.2021.109137

Abstract

Oncogenic histone lysine-to-methionine mutations block the methylation of their corresponding lysine residues on wild-type histones. One attractive model is that these mutations sequester histone methyltransferases, but genome-wide studies show that mutant histones and histone methyltransferases often do not colocalize. Using chromatin immunoprecipitation sequencing (ChIP-seq), here, we show that, in fission yeast, even though H3K9M-containing nucleosomes are broadly distributed across the genome, the histone H3K9 methyltransferase Clr4 is mainly sequestered at pericentric repeats. This selective sequestration of Clr4 depends not only on H3K9M but also on H3K14 ubiquitylation (H3K14ub), a modification deposited by a Clr4-associated E3 ubiquitin ligase complex. In vitro, H3K14ub synergizes with H3K9M to interact with Clr4 and potentiates the inhibitory effects of H3K9M on Clr4 enzymatic activity. Moreover, binding kinetics show that H3K14ub overcomes the Clr4 aversion to H3K9M and reduces its dissociation. The selective sequestration model reconciles previous discrepancies and demonstrates the importance of protein-interaction kinetics in regulating biological processes.

Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.

Conflict of interest statement

Declaration of interests The authors declare no competing interest.

References

  1. Genes Dev. 2013 May 1;27(9):985-90 - PubMed
  2. Elife. 2016 Sep 20;5: - PubMed
  3. Elife. 2018 Jun 22;7: - PubMed
  4. Nucleic Acids Res. 2019 Jan 8;47(D1):D821-D827 - PubMed
  5. Nat Cell Biol. 2006 Nov;8(11):1277-83 - PubMed
  6. Nat Cell Biol. 2005 Oct;7(10):1007-13 - PubMed
  7. Nature. 2012 Jan 29;482(7384):226-31 - PubMed
  8. Methods. 2014 Dec;70(2-3):134-8 - PubMed
  9. Oncogene. 2015 Jan 2;34(1):104-18 - PubMed
  10. Science. 2014 Aug 29;345(6200):1065-70 - PubMed
  11. Mol Cell. 2006 May 5;22(3):383-94 - PubMed
  12. Nucleic Acids Res. 2016 Jul 8;44(W1):W160-5 - PubMed
  13. Nature. 2018 Aug;560(7719):504-508 - PubMed
  14. Nat Med. 2017 Apr;23(4):493-500 - PubMed
  15. Science. 2013 May 17;340(6134):857-61 - PubMed
  16. Mol Cell. 2003 Jul;12(1):177-85 - PubMed
  17. RNA Biol. 2005 Jul-Sep;2(3):106-11 - PubMed
  18. Sci Rep. 2017 Mar 03;7:43906 - PubMed
  19. Proc Natl Acad Sci U S A. 2016 May 31;113(22):6182-7 - PubMed
  20. Cell Cycle. 2013 Aug 15;12(16):2546-52 - PubMed
  21. PLoS Genet. 2010 Nov 04;6(11):e1001196 - PubMed
  22. Proc Natl Acad Sci U S A. 2019 Oct 29;116(44):22152-22157 - PubMed
  23. Mol Cell. 2011 Oct 21;44(2):325-40 - PubMed
  24. Nat Genet. 2012 Jan 29;44(3):251-3 - PubMed
  25. J Biol Chem. 2010 Feb 12;285(7):4355-65 - PubMed
  26. Science. 2016 May 13;352(6287):844-9 - PubMed
  27. Nat Struct Mol Biol. 2017 Dec;24(12):1028-1038 - PubMed
  28. Nat Genet. 2017 Feb;49(2):180-185 - PubMed
  29. Cancer Cell. 2012 Oct 16;22(4):425-37 - PubMed
  30. Genes Dev. 2005 Jul 15;19(14):1705-14 - PubMed
  31. Nat Methods. 2012 Mar 04;9(4):357-9 - PubMed
  32. Nat Commun. 2016 Apr 28;7:11316 - PubMed
  33. Nat Rev Genet. 2007 Jan;8(1):35-46 - PubMed
  34. Nat Struct Mol Biol. 2008 Apr;15(4):381-8 - PubMed
  35. Science. 2021 Jan 22;371(6527): - PubMed
  36. Science. 2015 Apr 3;348(6230):1258699 - PubMed
  37. PLoS Genet. 2010 Sep 23;6(9):e1001132 - PubMed
  38. Science. 2014 Dec 19;346(6216):1529-33 - PubMed
  39. EMBO Rep. 2019 Oct 4;20(10):e48111 - PubMed
  40. Science. 2016 Jun 10;352(6291):1344-8 - PubMed
  41. Nat Biotechnol. 2011 Jan;29(1):24-6 - PubMed
  42. Sci Adv. 2018 Oct 31;4(10):eaau5935 - PubMed
  43. Nat Med. 2017 Apr;23(4):483-492 - PubMed
  44. Nat Cell Biol. 2019 Nov;21(11):1449-1461 - PubMed
  45. Cancer Cell. 2013 Nov 11;24(5):660-72 - PubMed
  46. Elife. 2020 Sep 09;9: - PubMed
  47. Nat Genet. 2013 Dec;45(12):1479-82 - PubMed

Publication Types

Grant support