Display options
Share it on

Surg Radiol Anat. 2021 Sep;43(9):1503-1517. doi: 10.1007/s00276-021-02759-w. Epub 2021 May 31.

Fetal development and growth of the human erector spinae with special reference to attachments on the surface aponeurosis.

Surgical and radiologic anatomy : SRA

Tatsuo Sato, Ji Hyun Kim, Kwang Ho Cho, Shogo Hayashi, José Francisco Rodríguez-Vázquez, Gen Murakami

Affiliations

  1. Emeritus Professor of Tokyo Medical and Dental University, Tokyo, Japan.
  2. Department of Anatomy, Jeonbuk National University Medical School, Geunji-ro 20, Deokjin-gu, Jeonju, Jeonbuk, 54907, Republic of Korea. [email protected].
  3. Department of Neurology, Wonkwang University School of Medicine and Hospital, Institute of Wonkwang Medical Science, Iksan, Korea.
  4. Department of Anatomy, School of Medicine, International University of Health and Welfare, Narita, Japan.
  5. Department of Anatomy and Embryology, Faculty of Medicine, Complutense University, Madrid, Spain.
  6. Division of Internal Medicine, Cupid Clinic, Iwamizawa, Hokkaido, Japan.

PMID: 34059927 DOI: 10.1007/s00276-021-02759-w

Abstract

PURPOSE: The longissimus (LO) and iliocostalis (IC) of adults consist of myofibers extending from the superolateral to the inferomedial side of the back and, because of the same course, they are fused in the thoracolumbar region. The LO also has a medial attachment to the long myofibers of the transversospinalis (TS) showing a course from the superomedial to the inferolateral side. However, there is apparently no information regarding when and how these similar longitudinal muscles differentiate from a cluster of dorsomedial myotome cells.

METHODS: We examined sagittal and horizontal sections of the trunks of 39 human embryos and fetuses (18-330 mm crown-rump length).

RESULTS: At 6-7 weeks gestational age (GA), the surface aponeurosis appeared prior to and independent of the thoracolumbar fascia. At 6-9 weeks GA, the LO myofibers had a postero-inferior course, from the transverse process to the initial aponeurosis, whereas the TS myofibers had a postero-superior course, from a lateral extension of the intertransverse ligament to the aponeurosis. However, the IC consisted of supracostal longitudinal myofibers and was distant from the LO until 12 weeks GA. Because of the lack of ligamentous attachments and ribs, myofibers of the TS, LO, and IC took a similar inferior course in the lumbar region. When the early TS was represented by the transverso-aponeurotic muscle, consequently, the LO corresponded to the aponeuro-transversal muscle and was independent from the IC.

CONCLUSION: The classical model of TS and LO development does not recognize the essential role of the aponeurosis identified here.

© 2021. The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature.

Keywords: Back muscles; Erector spinae aponeurosis; Facial ectoskeleton concept; Human fetus; Iliocostalis; Longissimus

References

  1. Abe H, Hayashi S, Kim JH, Murakami G, Rodríguez-Vázquez JF, Jin ZW (2021) Fetal development of the thoracolumbar fascia with special reference to the fascial connection with the transversus abdominis, latissimus dorsi, and serratus posterior inferior muscles. Surg Raiol Anat Online ahead of print. https://doi.org/10.1007/s00276-020-02668-4 - PubMed
  2. Aizawa Y, Kumaki K (1996) The course and the segmental origins of the cutaneous branches of the thoracic dorsal rami. Acta Anat Nippon 71:195–210 (In Japanese with an English abstract) - PubMed
  3. Benjamin M, Kaiser E, Milz S (2008) Structure-function relationships in tendons: a review. J Anat 212:211–228. https://doi.org/10.1111/j.1469-7580.2008.00864.x - PubMed
  4. Besinger RE, Johnson TRB (1989) Doppler recordings of fetal movement: clinical correlation with real-time ultrasound. Obstet Gynecol 74:277–280 - PubMed
  5. Blasi M, Blasi J, Domingo T, Pérez-Bellmunt A, Miguel-Pérez M (2015) Anatomical and histological study of human deep fasciae development. Surg Radiol Anat 37:571–578. https://doi.org/10.1007/s00276-014-1396-1 - PubMed
  6. Boszczyk A, Boszczyk B, Putz R (2002) Prenatal rotation of the lumbar spine and its relevance for the development zygapophysial joints. Spine 27:1094–1101. https://doi.org/10.1097/00007632-200205150-00016 - PubMed
  7. Cho KH, Kim JH, Ha YS, Murakami G, Cho BH, Abe S (2012) Development of the deep flexor tendons and the lumbricalis muscle in the hand and foot: a histological study using human mid-term fetuses. Folia Morphol 71:154–163 - PubMed
  8. Cho KH, Jin ZW, Abe H, Wilting J, Murakami G, Rodríguez-Vázquez JF (2018) Tensor fasciae latae muscle in human fetuses with special reference to its contribution onto development of the iliotibial tract. Folia Morphol 77:703–710. https://doi.org/10.5603/FM.a2018.0015 - PubMed
  9. Gasc JP (1981) Axial musculature. In: Gans C (ed) Biology of the reptilia, vol 11. Academic Press, London, pp 355–435 - PubMed
  10. Gościcka D, Murawski E (1980) Tendinous intersections of the rectus abdominis muscle in human fetuses. Folia Morphol 39:427–434 - PubMed
  11. Hedberg A, Carberg EB, Forssberg H, Hadders-Algra M (2005) Development of postural adjustments in sitting position during the first half year of life. Dev Med Child Neurol 47:312–320. https://doi.org/10.1017/s0012162205000605 - PubMed
  12. Huijing PA (1999) Muscle as a collagen fiber reinforced composite: a review of force transmission in muscle and whole limb. J Biomech 32:329–345. https://doi.org/10.1016/s0021-9290(98)00186-9 - PubMed
  13. Huq E, Wall CE, Taylor AB (2015) Epaxial muscle fiber architecture favors enhanced excursion and power in the leaper Galago senegalensis. J Anat 227:524–540. https://doi.org/10.1111/joa.12351 - PubMed
  14. Jin ZW, Hayashi S, Cho KW, Murakami G, Wilting J, Rodríguez-Vázquez JF (2020) Development and growth of the foot lumbricalis muscle: a histological study using human fetuses. Folia Morphol. https://doi.org/10.5603/FM.a2020.0108 - PubMed
  15. Jones FW (1944) Structure and function as seen in the foot. Tindall and Cox Bailliére, London - PubMed
  16. Kitamura K, Kim JH, Cho KH, Murakami G, Rodríguez-Vázquez JF, Yamamoto H (2020) Regional differences in the zygapophysial joint cavities: a histological study using human fetuses. Anat Rec. https://doi.org/10.1002/ar.24532 - PubMed
  17. Kitamura K, Hayashi H, Jin ZW, Yamamoto M, Murakami G, Rodríguez-Vázquez JF, Yamamoto H (2020b) The fetal cervical zygapophysial joint and its associated synovial tissues: a histological study using near-term human fetuses. Folia Morphol in press. - PubMed
  18. Mekonen HK, Hikspoors JPJM, Mommen G, Kőohler SE, Lamers WH (2016) Development of the epaxial muscles in the human embryo. Clin Anat 29:1031–1045. https://doi.org/10.1002/ca.22775 - PubMed
  19. Murakami G, Akita K, Sato T (1991) Arrangement and innervation of the iliocostalis and longissimus muscles of the brown caiman (Caiman crocodilus fuscus: Alligatoridae, Crocodilia). Am J Anat 192:241–256. https://doi.org/10.1002/aja.1001920304 - PubMed
  20. Nishi S (1919) Zur vergleichenden anatomie der eigentlichen (genuine) rűckenmuskeln. Gegenbaurs Morphol Jahrb 50:167–318 - PubMed
  21. Nishi S (1938) Muskelen des Rumpfes. In: Bolk L, Göppert E, Kallius E, Lubosch E (ed) Handbuch der vergleichenden Anatomie der Wirbeltier, Urban and Schwarzenberg, Berlin, pp 351–446. - PubMed
  22. Nomizo A, Kudoh H, Sakai T (2005) IIiocotalis muscles in three mammals (dolphin, goat and human): their identification, structure and innervation. Anat Sci Int 80:212–222. https://doi.org/10.1111/j.1447-073X.2005.00115.x - PubMed
  23. Pearson AA, Sauter RW, Buckley TF (1966) Further observations on the cutaneous branches of the dorsal primary rami of the spinal nerves. Am J Anat 118:891–904. https://doi.org/10.1002/aja.1001180313 - PubMed
  24. Rai R, Azih LC, Iwanaga J, Loukas M, Mortazavi M, Oskouian RJ, Tubbs RS (2018) Tendinous inscriptions of the rectus abdominis: a comprehensive review. Cureus 10:e3100. https://doi.org/10.7759/cureus.3100 - PubMed
  25. Rachwani J, Santamaria V, Saavedra SL, Woollacott MH (2015) The development of trunk control and its relation to reaching in infancy: a longitudinal study. Front Hum Neurosci 9:94. https://doi.org/10.3389/fnhum.2015.00094 . eCollection 2015 - PubMed
  26. Sato T (1973) A new classification of the transversospinalis system; preliminary report. Proc Japan Acad 49:51–56 - PubMed
  27. Sato T (1974) On the rami intermedii of the spinal nerves and their equivalent offshoots; a contribution to classification of the trunk muscles. Z Anat Entwicklungsgesch 143:143–157. https://doi.org/10.1007/BF00525767 - PubMed
  28. Sato T, Koizumi K, Kim JH, Kim JH, Wang BJ, Murakami G, Cho BH (2011) Fetal development of deep back muscles in the human thoracic region with a focus on transversospinalis muscles and the medial branch of the spinal nerve posterior ramus. J Anat 219:756–765. https://doi.org/10.1111/j.1469-7580.2011.01430.x - PubMed
  29. Seyyar GK, Aras B, Aras O (2019) Trunk control and functionality in children with spastic cerebral palsy. Dev Neurorehabil. 22:120–125. https://doi.org/10.1080/17518423.2018.1460879 - PubMed
  30. Shiraishi Y, Jin ZW, Mitomo K, Yamamoto M, Murakami G, Abe H, Wilting J, Abe S (2018) Foetal development of the human gluteus maximus muscle with special reference to its fascial insertion. Folia Morphol 77:144–150. https://doi.org/10.5603/FM.a2017.0060 - PubMed
  31. Trotter JA (1993) Functional morphology of force transmission in skeletal muscle. Acta Anat 146:205–222. https://doi.org/10.1159/000147459 - PubMed
  32. van Balen LC, Boxum AG, Dijkstra LJ, Hamer EG, Hielkema T, Reinders-Messelink HA, Hadders-Algra M (2018) Are postural adjustments during reaching related to walking development in typically developing infants and infants at risk of cerebral palsy? Infant Behav Dev. 50:107–115. https://doi.org/10.1016/j.infbeh.2017.12.004 - PubMed
  33. Xu D, Jin ZW, Kim JH, Rodríguez-Vázquez JF, Murakami G, Hayashi S (2020) Umbilicus and the rectus sheath: a study using human fetuses. Surg Radiol Anat 42:461–471. https://doi.org/10.1007/s00276-019-02398-2 - PubMed
  34. Yang JD, Hwang HP, Kim JH, Rodríguez-Vázquez JF, Abe S, Murakami G, Cho BH (2012) Development of the rectus abdominis and its sheath in the human fetus. Yonsei Med J 53:1028–1035. https://doi.org/10.3349/ymj.2012.53.5.1028 - PubMed
  35. Warmbrunn MV, de Bakker BS, Hagoort J, Alefs-de Bakker PB, OOstra RJ, (2018) Hitherto unknown detailed muscle anatomy in an 8-week-old embryo. J Anat 233:243–254. https://doi.org/10.1111/joa.12819 - PubMed
  36. Webster EL, Hudson PE, Channon SB (2014) Comparative functional anatomy of the epaxial musculature of digs (Canis familiaris) bred for sprinting vs. fighting. J Anat 225:317–327. https://doi.org/10.1111/joa.12208 - PubMed
  37. Willard FH, Vleeming A, Schuenke MD, Danneels L, Schleip R (2012) The thoracolumbar fascia: anatomy, function and clinical consideration. J Anat 221:507–536. https://doi.org/10.1111/j.1469-7580.2012.01511.x - PubMed

MeSH terms

Publication Types