Display options
Share it on

Blood. 2021 Oct 28;138(17):1615-1627. doi: 10.1182/blood.2020007401.

Impairment of human terminal erythroid differentiation by histone deacetylase 5 deficiency.

Blood

Yaomei Wang, Wei Li, Vincent P Schulz, Huizhi Zhao, Xiaoli Qu, Qian Qi, Yong Cheng, Xinhua Guo, Shijie Zhang, Xin Wei, Donghao Liu, Karina Yazdanbakhsh, Christopher D Hillyer, Narla Mohandas, Lixiang Chen, Patrick G Gallagher, Xiuli An

Affiliations

  1. School of Life Sciences, Zhengzhou University, Zhengzhou, China.
  2. Laboratory of Membrane Biology, New York Blood Center, New York, NY.
  3. Department of Hematology, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.
  4. Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
  5. Department of Pediatrics, Yale University, New Haven, CT.
  6. Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN.
  7. Department of Anesthesiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
  8. Laboratory of Complement Biology and.
  9. Red Cell Physiology Laboratory, New York Blood Center, New York, NY; and.
  10. Department of Pathology and.
  11. Department of Genetics, Yale University, New Haven, CT.

PMID: 34036344 PMCID: PMC8554652 DOI: 10.1182/blood.2020007401

Abstract

Histone deacetylases (HDACs) are a group of enzymes that catalyze the removal of acetyl groups from histone and nonhistone proteins. HDACs have been shown to have diverse functions in a wide range of biological processes. However, their roles in mammalian erythropoiesis remain to be fully defined. This study showed that, of the 11 classic HDAC family members, 6 (HDAC1, -2, -3, and HDAC5, -6, -7) are expressed in human erythroid cells, with HDAC5 most significantly upregulated during terminal erythroid differentiation. Knockdown of HDAC5 by either short hairpin RNA or small interfering RNA in human CD34+ cells followed by erythroid cell culture led to increased apoptosis, decreased chromatin condensation, and impaired enucleation of erythroblasts. Biochemical analyses revealed that HDAC5 deficiency resulted in activation of p53 in association with increased acetylation of p53. Furthermore, although acetylation of histone 4 (H4) is decreased during normal terminal erythroid differentiation, HDAC5 deficiency led to increased acetylation of H4 (K12) in late-stage erythroblasts. This increased acetylation was accompanied by decreased chromatin condensation, implying a role for H4 (K12) deacetylation in chromatin condensation. ATAC-seq and RNA sequencing analyses revealed that HDAC5 knockdown leads to increased chromatin accessibility genome-wide and global changes in gene expression. Moreover, pharmacological inhibition of HDAC5 by the inhibitor LMK235 also led to increased H4 acetylation, impaired chromatin condensation, and enucleation. Taken together, our findings have uncovered previously unrecognized roles and molecular mechanisms of action for HDAC5 in human erythropoiesis. These results may provide insights into understanding the anemia associated with HDAC inhibitor treatment.

© 2021 by The American Society of Hematology.

References

  1. Blood. 2014 Jan 23;123(4):570-81 - PubMed
  2. Blood. 2012 Jun 21;119(25):6118-27 - PubMed
  3. Nature. 2005 Sep 29;437(7059):754-8 - PubMed
  4. Haematologica. 2010 Dec;95(12):2013-21 - PubMed
  5. Blood. 2018 Nov 29;132(22):2406-2417 - PubMed
  6. Science. 1990 Apr 20;248(4953):378-81 - PubMed
  7. J Hematol Oncol. 2018 Feb 12;11(1):19 - PubMed
  8. Genes Dev. 2010 Aug 1;24(15):1620-33 - PubMed
  9. Blood. 2014 Dec 4;124(24):3636-45 - PubMed
  10. Blood. 2008 Dec 15;112(13):5228-37 - PubMed
  11. Haematologica. 2017 May;102(5):903-909 - PubMed
  12. Blood. 2017 Apr 6;129(14):2002-2012 - PubMed
  13. Haematologica. 2017 Jun;102(6):984-994 - PubMed
  14. Epigenetics Chromatin. 2017 Nov 10;10(1):53 - PubMed
  15. Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3333-8 - PubMed
  16. Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):9126-31 - PubMed
  17. Blood. 2017 Jan 12;129(2):226-237 - PubMed
  18. Nature. 1997 Sep 25;389(6649):349-52 - PubMed
  19. Genes Dev. 1996 Jan 15;10(2):154-64 - PubMed
  20. Blood. 2011 Dec 1;118(23):6087-96 - PubMed
  21. Biochem J. 2003 Mar 15;370(Pt 3):737-49 - PubMed
  22. Proc Natl Acad Sci U S A. 2009 Oct 13;106(41):17413-8 - PubMed
  23. Blood. 2011 Aug 25;118(8):2044-54 - PubMed
  24. Genes Dev. 2011 Dec 15;25(24):2573-8 - PubMed
  25. J Med Chem. 2013 Jan 24;56(2):427-36 - PubMed
  26. Cell Rep. 2019 Sep 10;28(11):2996-3009.e7 - PubMed
  27. Br J Haematol. 2006 Oct;135(2):242-53 - PubMed
  28. Blood Cells Mol Dis. 2016 Jan;56(1):62-9 - PubMed
  29. Epigenetics Chromatin. 2020 Mar 16;13(1):16 - PubMed
  30. Oncogene. 2002 May 13;21(21):3368-76 - PubMed
  31. Mol Cell. 2006 Aug 4;23(3):289-96 - PubMed
  32. Cell Rep. 2017 Nov 28;21(9):2376-2383 - PubMed
  33. Proteomics. 2018 Jun;18(11):e1700442 - PubMed
  34. Blood. 2014 May 29;123(22):3466-77 - PubMed
  35. Blood. 2013 Feb 21;121(8):1296-303 - PubMed
  36. Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12617-22 - PubMed
  37. Nucleic Acids Res. 2003 Aug 1;31(15):e77 - PubMed
  38. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7580-4 - PubMed
  39. Methods Mol Biol. 2018;1698:193-203 - PubMed
  40. Haematologica. 2012 Oct;97(10):1471-9 - PubMed
  41. Blood. 2013 Apr 18;121(16):3246-53 - PubMed
  42. Trends Cell Biol. 2011 Jul;21(7):409-15 - PubMed
  43. Nat Rev Genet. 2009 Jan;10(1):32-42 - PubMed
  44. Chromosome Res. 2009;17(1):47-64 - PubMed
  45. Cell. 1989 Apr 21;57(2):277-85 - PubMed
  46. Blood. 2010 Mar 11;115(10):2021-7 - PubMed
  47. Expert Rev Hematol. 2012 Jun;5(3):303-11 - PubMed
  48. Development. 1995 Jan;121(1):163-72 - PubMed
  49. Mol Cell. 2013 Nov 7;52(3):406-20 - PubMed
  50. J Clin Oncol. 2015 Aug 10;33(23):2492-9 - PubMed
  51. Nat Commun. 2018 Jul 16;9(1):2741 - PubMed
  52. EMBO J. 2010 Jan 6;29(1):131-44 - PubMed
  53. Br J Haematol. 2014 Jun;165(5):714-21 - PubMed
  54. Blood. 2011 Mar 3;117(9):2567-76 - PubMed

Publication Types

Grant support