Display options
Share it on

Clin Genet. 2021 Oct;100(4):376-385. doi: 10.1111/cge.14009. Epub 2021 Jun 11.

Biallelic mutations in KATNAL2 cause male infertility due to oligo-astheno-teratozoospermia.

Clinical genetics

Xiaoli Wei, Wensheng Liu, Xingshen Zhu, Youzhu Li, Xiaoya Zhang, Jing Chen, Vladimir Isachenko, Yanwei Sha, Zhongxian Lu

Affiliations

  1. School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China.
  2. Obstetrics and Gynaecology Centre, Department of Obstetrics and Gynaecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
  3. Reproductive Medicine Centre, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.
  4. Research Group for Reproductive Medicine, Department of Obstetrics and Gynaecology, Medical Faculty, University of Cologne, Cologne, North Rhine-Westphalia, Germany.
  5. Department of Andrology, United Diagnostic and Research Centre for Clinical Genetics, School of Medicine & Women and Children's Hospital, Xiamen University, Xiamen, Fujian, China.

PMID: 34096614 DOI: 10.1111/cge.14009

Abstract

Oligo-astheno-teratozoospermia (OAT) is a common cause of male infertility, and most of idiopathic OAT patients are thought to be caused by genetic defects. Here, we recruited 38 primary infertile patients with the OAT phenotype and 40 adult men with proven fertility for genetic analysis and identified biallelic mutations of KATNAL2 by whole-exome sequencing in two cases. F013/II:1, from a consanguineous family, carried the KATNAL2 c.328C > T:p.Arg110X homozygous mutations. The other carried c.55A > G: p.Lys19Glu and c.169C > T: p Arg57Trp biallelic mutations. None of the KATNAL2 variants were found in the 40 adult men with proven fertility. The spermatozoa from patients with KATNAL2 biallelic mutations exhibited conspicuous defects in maturation, head morphology, and the structure of mitochondrial sheaths and flagella. KATNAL2 was mainly expressed in the pericentriolar material and mitochondrial sheath of the spermatozoa from control subjects, but it was undetectable in the spermatozoa from the patients. Furthermore, Katnal2 null male mice were infertile and displayed an OAT phenotype. Our results proved that the biallelic mutations in KATNAL2 cause male infertility and OAT in humans for the first time, to our knowledge, which could enrich the genetic defect spectrum of OAT and be beneficial for its accurate genetic screening and clinical diagnosis.

© 2021 John Wiley & Sons A/S . Published by John Wiley & Sons Ltd.

Keywords: KATNAL2; biallelic mutations; oligo-astheno-teratozoospermia; whole-exome sequencing

References

  1. Thonneau P, Marchand S, Tallec A, et al. Incidence and main causes of infertility in a resident population (1,850,000) of three French regions (1988-1989). Hum Reprod. 1991;6(6):811-816. - PubMed
  2. Sharlip ID, Jarow JP, Belker AM, et al. Best practice policies for male infertility. Fertil Steril. 2002;77(5):873-882. - PubMed
  3. Cavallini G. Male idiopathic oligoasthenoteratozoospermia. Asian J Androl. 2006;8(2):143-157. - PubMed
  4. Colpi GM, Francavilla S, Haidl G, et al. European academy of Andrology guideline management of oligo-astheno-teratozoospermia. Andrology. 2018;6(4):513-524. - PubMed
  5. Matzuk MM, Lamb DJ. Genetic dissection of mammalian fertility pathways. Nat Cell Biol. 2002;4(Suppl):s41-s49. - PubMed
  6. Kastner P, Mark M, Leid M, et al. Abnormal spermatogenesis in RXR beta mutant mice. Genes Dev. 1996;10(1):80-92. - PubMed
  7. Nakamura T, Yao R, Ogawa T, et al. Oligo-astheno-teratozoospermia in mice lacking Cnot7, a regulator of retinoid X receptor beta. Nat Genet. 2004;36(5):528-533. - PubMed
  8. Fujita E, Kouroku Y, Ozeki S, et al. Oligo-astheno-teratozoospermia in mice lacking RA175/TSLC1/SynCAM/IGSF4A, a cell adhesion molecule in the immunoglobulin superfamily. Mol Cell Biol. 2006;26(2):718-726. - PubMed
  9. Chen Y, Wang H, Qi N, et al. Functions of TAM RTKs in regulating spermatogenesis and male fertility in mice. Reproduction. 2009;138(4):655-666. - PubMed
  10. Udagawa O, Ito C, Ogonuki N, et al. Oligo-astheno-teratozoospermia in mice lacking ORP4, a sterol-binding protein in the OSBP-related protein family. Genes Cells. 2014;19(1):13-27. - PubMed
  11. Miyazaki T, Mori M, Yoshida CA, et al. Galnt3 deficiency disrupts acrosome formation and leads to oligoasthenoteratozoospermia. Histochem Cell Biol. 2013;139(2):339-354. - PubMed
  12. Kusari F, Mihola O, Schimenti JC, Trachtulec Z. Meiotic epigenetic factor PRDM9 impacts sperm quality of hybrid mice. Reproduction. 2020;160(1):53-64. - PubMed
  13. Qian YC, Xie YX, Wang CS, et al. Mkrn2 deficiency induces teratozoospermia and male infertility through p53/PERP-mediated apoptosis in testis. Asian J Androl. 2020;22(4):414-421. - PubMed
  14. Pleuger C, Fietz D, Hartmann K, et al. Expression of katanin p80 in human spermatogenesis. Fertil Steril. 2016;106(7):1683-1690. e1681. - PubMed
  15. Dunleavy JEM, Okuda H, O'Connor AE, et al. Katanin-like 2 (KATNAL2) functions in multiple aspects of haploid male germ cell development in the mouse. PLoS Genet. 2017;13(11):e1007078. - PubMed
  16. Hosseini SH, Sadighi Gilani MA, Meybodi AM, Sabbaghian M. The impact of RABL2B gene (rs144944885) on human male infertility in patients with oligoasthenoteratozoospermia and immotile short tail sperm defects. J Assist Reprod Genet. 2017;34(4):505-510. - PubMed
  17. Singh R, Kaleem AM, Narayana SS, Mahdi AA. A case of oligoasthenoteratozoospermia with AZFc deletion and persistent oxidative stress. Indian J Hum Genet. 2012;18(3):359-362. - PubMed
  18. Sha YW, Wang X, Su ZY, et al. TDRD6 is associated with oligoasthenoteratozoospermia by sequencing the patient from a consanguineous family. Gene. 2018;659:84-88. - PubMed
  19. Stoppin-Mellet V, Gaillard J, Vantard M. Plant katanin, a microtubule severing protein. Cell Biol Int. 2003;27(3):279. - PubMed
  20. Rezabkova L, Jiang K, Capitani G, et al. Structural basis of katanin p60:p80 complex formation. Sci Rep. 2017;7(1):14893. - PubMed
  21. Ghosh DK, Dasgupta D, Guha A. Models, regulations, and functions of microtubule severing by Katanin. ISRN Mol Biol. 2012;2012:596289. - PubMed
  22. O'Donnell L, Rhodes D, Smith SJ, et al. An essential role for katanin p80 and microtubule severing in male gamete production. PLoS Genet. 2012;8(5):e1002698. - PubMed
  23. Stathatos GG, Dunleavy JEM, Zenker J, O'Bryan MK. Delta and epsilon tubulin in mammalian development. Trends Cell Biol. 2021;S0962-8924(21):00066-0. https://doi.org/10.1016/j.tcb.2021.03.010. - PubMed
  24. Liu W, Sha Y, Li Y, et al. Loss-of-function mutations in SPEF2 cause multiple morphological abnormalities of the sperm flagella (MMAF). J Med Genet. 2019;56(10):678-684. - PubMed
  25. Sha YW, Wang X, Xu X, et al. Biallelic mutations in PMFBP1 cause acephalic spermatozoa. Clin Genet. 2019;95(2):277-286. - PubMed
  26. Khattri A, Reddy VP, Pandey RK, et al. Novel mutations in calcium/calmodulin-dependent protein kinase IV (CAMK4) gene in infertile men. Int J Androl. 2012;35(6):810-818. - PubMed
  27. Wu JY, Ribar TJ, Cummings DE, Burton KA, McKnight GS, Means AR. Spermiogenesis and exchange of basic nuclear proteins are impaired in male germ cells lacking Camk4. Nat Genet. 2000;25(4):448-452. - PubMed
  28. Haraguchi S, Tsuda M, Kitajima S, et al. nanos1: a mouse nanos gene expressed in the central nervous system is dispensable for normal development. Mech Dev. 2003;120(6):721-731. - PubMed
  29. Kusz-Zamelczyk K, Sajek M, Spik A, et al. Mutations of NANOS1, a human homologue of the drosophila morphogen, are associated with a lack of germ cells in testes or severe oligo-astheno-teratozoospermia. J Med Genet. 2013;50(3):187-193. - PubMed
  30. Joachimiak E, Waclawek E, Niziolek M, et al. The LisH domain-containing N-terminal fragment is important for the localization, dimerization, and stability of Katnal2 in Tetrahymena. Cells. 2020;9(2):292-311. https://doi.org/10.3390/cells9020292. - PubMed
  31. de Kretser DM, Loveland KL, Meinhardt A, Simorangkir D, Wreford N. Spermatogenesis. Hum Reprod. 1998;13(Suppl 1):1-8. - PubMed
  32. Gao LL, Xu F, Jin Z, Ying XY, Liu JW. Microtubulesevering protein Katanin p60 ATPasecontaining subunit alike 1 is involved in polebased spindle organization during mouse oocyte meiosis. Mol Med Rep. 2019;20(4):3573-3582. - PubMed
  33. Qin Y, Zhou Y, Shen Z, et al. WDR62 is involved in spindle assembly by interacting with CEP170 in spermatogenesis. Development. 2019;146(20):dev174128. https://doi.org/10.1242/dev.174128. - PubMed
  34. Loughlin R, Wilbur JD, McNally FJ, Nedelec FJ, Heald R. Katanin contributes to interspecies spindle length scaling in Xenopus. Cell. 2011;147(6):1397-1407. - PubMed
  35. McNally KP, McNally FJ. The spindle assembly function of Caenorhabditis elegans katanin does not require microtubule-severing activity. Mol Biol Cell. 2011;22(9):1550-1560. - PubMed
  36. Casanova M, Crobu L, Blaineau C, Bourgeois N, Bastien P, Pages M. Microtubule-severing proteins are involved in flagellar length control and mitosis in Trypanosomatids. Mol Microbiol. 2009;71(6):1353-1370. - PubMed

Publication Types

Grant support