Display options
Share it on

J Mol Cell Biol. 2021 Dec 06;13(9):646-661. doi: 10.1093/jmcb/mjab034.

Sequential activation of uterine epithelial IGF1R by stromal IGF1 and embryonic IGF2 directs normal uterine preparation for embryo implantation.

Journal of molecular cell biology

Chan Zhou, Meiying Lv, Peike Wang, Chuanhui Guo, Zhangli Ni, Haili Bao, Yedong Tang, Han Cai, Jinhua Lu, Wenbo Deng, Xiaoyu Yang, Guoliang Xia, Haibin Wang, Chao Wang, Shuangbo Kong

Affiliations

  1. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.
  2. Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China.
  3. Fuzhou Hospital of Traditional Chinese Medicine Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China.
  4. Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China.
  5. Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, NingXia University, Yinchuan, China.

PMID: 34097060 PMCID: PMC8648386 DOI: 10.1093/jmcb/mjab034

Abstract

Embryo implantation in both humans and rodents is initiated by the attachment of a blastocyst to the uterine epithelium. For blastocyst attachment, the uterine epithelium needs to transform at both the structural and molecular levels first, and then initiate the interaction with trophectoderm. Any perturbation during this process will result in implantation failure or long-term adverse pregnancy outcomes. Endocrine steroid hormones, which function through nuclear receptors, combine with the local molecules produced by the uteri or embryo to facilitate implantation. The insulin-like growth factor (IGF) signaling has been reported to play a vital role during pregnancy. However, its physiological function during implantation remains elusive. This study revealed that mice with conditional deletion of Igf1r gene in uteri suffered from subfertility, mainly due to the disturbed uterine receptivity and abnormal embryo implantation. Mechanistically, we uncovered that in response to the nidatory estrogen on D4 of pregnancy, the epithelial IGF1R, stimulated by the stromal cell-produced IGF1, facilitated epithelial STAT3 activation to modulate the epithelial depolarity. Furthermore, embryonic derived IGF2 could activate both the epithelial ERK1/2 and STAT3 signaling through IGF1R, which was critical for the transcription of Cox2 and normal attachment reaction. In brief, our data revealed that epithelial IGF1R was sequentially activated by the uterine stromal IGF1 and embryonic IGF2 to guarantee normal epithelium differentiation during the implantation process.

© The Author(s) (2021). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, CEMCS, CAS.

Keywords: IGF1; IGF1R; IGF2; blastocyst; implantation; uterine epithelium

References

  1. Genes Dev. 1992 Jun;6(6):939-52 - PubMed
  2. J Clin Invest. 2010 Apr;120(4):1004-15 - PubMed
  3. Dev Cell. 2011 Dec 13;21(6):1014-25 - PubMed
  4. Open Biol. 2013 Apr 24;3(4):130035 - PubMed
  5. Proc Natl Acad Sci U S A. 2001 Jan 30;98(3):1047-52 - PubMed
  6. Nature. 2002 Jun 27;417(6892):945-8 - PubMed
  7. Mamm Genome. 2000 Mar;11(3):196-205 - PubMed
  8. Endocr Rev. 1990 Aug;11(3):443-53 - PubMed
  9. J Exp Med. 2001 Jul 16;194(2):189-203 - PubMed
  10. J Biol Chem. 2019 Jun 21;294(25):9746-9759 - PubMed
  11. J Anat. 2009 Jul;215(1):3-13 - PubMed
  12. Stem Cell Reports. 2017 Oct 10;9(4):1062-1070 - PubMed
  13. Endocrinology. 2014 Jul;155(7):2718-24 - PubMed
  14. Cell. 1997 Oct 17;91(2):197-208 - PubMed
  15. Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15847-51 - PubMed
  16. Science. 2002 Jun 21;296(5576):2185-8 - PubMed
  17. Nature. 1992 Sep 3;359(6390):76-9 - PubMed
  18. Proc Natl Acad Sci U S A. 2017 May 2;114(18):4816-4821 - PubMed
  19. Development. 1994 May;120(5):1071-83 - PubMed
  20. Proc Natl Acad Sci U S A. 2004 Jul 13;101(28):10326-31 - PubMed
  21. Endocrinology. 2000 Dec;141(12):4365-72 - PubMed
  22. Cancer Lett. 2010 Mar 1;289(1):11-22 - PubMed
  23. Sci Rep. 2020 Sep 23;10(1):15523 - PubMed
  24. Nat Rev Genet. 2006 Mar;7(3):185-99 - PubMed
  25. J Endocrinol. 2002 Feb;172(2):221-36 - PubMed
  26. Reproduction. 2009 Nov;138(5):827-36 - PubMed
  27. FASEB J. 2016 Apr;30(4):1425-35 - PubMed
  28. Biol Reprod. 2015 May;92(5):118 - PubMed
  29. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):12002-7 - PubMed
  30. Mol Endocrinol. 2013 Dec;27(12):1996-2012 - PubMed
  31. Mol Cell Biol. 2007 Aug;27(15):5468-78 - PubMed
  32. Mol Cell Biol. 2010 Apr;30(7):1607-19 - PubMed
  33. J Biol Chem. 2010 Jan 22;285(4):2676-85 - PubMed
  34. Cell Rep. 2015 Apr 21;11(3):358-65 - PubMed
  35. Endocrinology. 2017 Jul 1;158(7):2309-2318 - PubMed
  36. Vitam Horm. 2002;64:43-76 - PubMed
  37. Sci Rep. 2016 Sep 12;6:33014 - PubMed
  38. N Engl J Med. 2001 Nov 8;345(19):1400-8 - PubMed
  39. J Endocrinol. 2019 Sep 1;: - PubMed
  40. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10159-62 - PubMed
  41. PLoS Genet. 2012;8(2):e1002500 - PubMed
  42. Mol Reprod Dev. 2013 Jan;80(1):8-21 - PubMed
  43. Oncogene. 2018 Nov;37(45):5952-5966 - PubMed
  44. Oncogene. 1998 Dec 17;17(24):3157-67 - PubMed
  45. Endocr Rev. 2000 Jun;21(3):313-45 - PubMed

Publication Types

Grant support