Display options
Share it on

Vaccines (Basel). 2021 May 18;9(5). doi: 10.3390/vaccines9050519.

Balance between Protection and Pathogenic Response to Aerosol Challenge with .

Vaccines

Sadaf Sulman, Benjamin O Savidge, Kawther Alqaseer, Mrinal K Das, Neda Nezam Abadi, John E Pearl, Obolbek Turapov, Galina V Mukamolova, M Waheed Akhtar, Andrea May Cooper

Affiliations

  1. Department Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK.
  2. School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan.
  3. Leicester Tuberculosis Research Group-LTBRG, University of Leicester, Leicester LE1 7RH, UK.
  4. Department of Basic Science, Faculty of Nursing, University of Kufa, P.O. Box 21, Kufa, Najaf Governorate, Najaf 540011, Iraq.
  5. APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland.

PMID: 34070048 PMCID: PMC8158147 DOI: 10.3390/vaccines9050519

Abstract

Tuberculosis vaccines capable of reducing disease worldwide have proven difficult to develop. BCG is effective in limiting childhood disease, but adult TB is still a major public health issue. Development of new vaccines requires identification of antigens that are both spatially and temporally available throughout infection, and immune responses to which reduce bacterial burden without increasing pathologic outcomes. Subunit vaccines containing antigen require adjuvants to drive appropriate long-lived responses. We generated a triple-antigen fusion containing the virulence-associated EsxN (Rv1793), the PPE42 (Rv2608), and the latency associated Rv2628 to investigate the balance between bacterial reduction and weight loss in an animal model of aerosol infection. We found that in both a low pattern recognition receptor (PRR) engaging adjuvant and a high PRR-engaging adjuvant (MPL/TDM/DDA) the triple-antigen fusion could reduce the bacterial burden, but also induced weight loss in the mice upon aerosol infection. The weight loss was associated with an imbalance between TNFα and IL-17 transcription in the lung upon challenge. These data indicate the need to assess both protective and pathogenic responses when investigating subunit vaccine activity.

Keywords: antigen; tuberculosis; vaccine; weight loss

References

  1. Annu Rev Immunol. 2009;27:393-422 - PubMed
  2. Infect Immun. 2007 Feb;75(2):941-9 - PubMed
  3. Cell Metab. 2015 Nov 3;22(5):799-810 - PubMed
  4. Cold Spring Harb Perspect Med. 2014 Sep 25;5(2):a018556 - PubMed
  5. Infect Immun. 2002 May;70(5):2256-63 - PubMed
  6. Immunol Rev. 2015 Mar;264(1):46-59 - PubMed
  7. Vaccines (Basel). 2021 May 18;9(5): - PubMed
  8. J Investig Dermatol Symp Proc. 2007 May;12(1):22-5 - PubMed
  9. J Immunol. 2014 Apr 1;192(7):3247-58 - PubMed
  10. J Exp Med. 2015 May 4;212(5):715-28 - PubMed
  11. PLoS Med. 2016 Oct 25;13(10):e1002152 - PubMed
  12. Cell Mol Immunol. 2018 Mar;15(3):226-232 - PubMed
  13. Immunity. 2020 Nov 17;53(5):1033-1049.e7 - PubMed
  14. Cold Spring Harb Perspect Med. 2014 May 22;4(7):a018465 - PubMed
  15. J Exp Med. 2010 Aug 2;207(8):1609-16 - PubMed
  16. Curr Opin Immunol. 2012 Aug;24(4):431-7 - PubMed
  17. Nat Rev Immunol. 2019 Sep;19(9):550-562 - PubMed
  18. Scand J Immunol. 2012 Sep;76(3):271-7 - PubMed
  19. Lancet Respir Med. 2021 Apr;9(4):373-386 - PubMed
  20. Lancet. 2006 Apr 8;367(9517):1173-80 - PubMed
  21. Cell Host Microbe. 2017 Jun 14;21(6):695-706.e5 - PubMed
  22. Vaccine. 2011 Feb 4;29(7):1519-26 - PubMed
  23. Semin Immunopathol. 2020 Jun;42(3):315-331 - PubMed
  24. Nat Immunol. 2015 Jan;16(1):57-63 - PubMed
  25. Tuberculosis (Edinb). 2013 Nov;93(6):654-9 - PubMed
  26. Tuberculosis (Edinb). 2020 Sep;124:101981 - PubMed
  27. Tuber Lung Dis. 1997;78(1):57-66 - PubMed
  28. Sci Rep. 2017 May 17;7(1):1999 - PubMed
  29. Front Immunol. 2014 Apr 23;5:188 - PubMed
  30. Sci Transl Med. 2010 Oct 13;2(53):53ra74 - PubMed
  31. J Exp Med. 2015 Aug 24;212(9):1449-63 - PubMed
  32. J Immunol. 2004 Dec 15;173(12):7490-6 - PubMed
  33. Nat Immunol. 2007 Apr;8(4):369-77 - PubMed

Publication Types

Grant support