Display options
Share it on

Biol Chem. 2021 May 31;402(9):1047-1062. doi: 10.1515/hsz-2021-0156. Print 2021 Aug 26.

The many facets of bile acids in the physiology and pathophysiology of the human liver.

Biological chemistry

Christoph G W Gertzen, Holger Gohlke, Dieter Häussinger, Diran Herebian, Verena Keitel, Ralf Kubitz, Ertan Mayatepek, Lutz Schmitt

Affiliations

  1. Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
  2. Center for Structural Studies (CSS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
  3. John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Jülich, Germany.
  4. Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Düsseldorf, Germany.
  5. Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
  6. Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.

PMID: 34049433 DOI: 10.1515/hsz-2021-0156

Abstract

Bile acids perform vital functions in the human liver and are the essential component of bile. It is therefore not surprising that the biology of bile acids is extremely complex, regulated on different levels, and involves soluble and membrane receptors as well as transporters. Hereditary disorders of these proteins manifest in different pathophysiological processes that result in liver diseases of varying severity. In this review, we summarize our current knowledge of the physiology and pathophysiology of bile acids with an emphasis on recently established analytical approaches as well as the molecular mechanisms that underlie signaling and transport of bile acids. In this review, we will focus on ABC transporters of the canalicular membrane and their associated diseases. As the G protein-coupled receptor, TGR5, receives increasing attention, we have included aspects of this receptor and its interaction with bile acids.

© 2021 Christoph G.W. Gertzen et al., published by De Gruyter, Berlin/Boston.

Keywords: bile salts; hereditary diseases; liver; membrane transport

References

  1. Admirand, W.H. and Small, D.M. (1968). The physicochemical basis of cholesterol gallstone formation in man. J. Clin. Invest. 47: 1043–1052. https://doi.org/10.1172/jci105794. - PubMed
  2. Alam, A., Kowal, J., Broude, E., Roninson, I., and Locher, K.P. (2019). Structural insight into substrate and inhibitor discrimination by human P-glycoprotein. Science 363: 753–756. https://doi.org/10.1126/science.aav7102. - PubMed
  3. Anwer, M.S., Gillin, H., Mukhopadhyay, S., Balasubramaniyan, N., Suchy, F.J., and Ananthanarayanan, M. (2005). Dephosphorylation of Ser-226 facilitates plasma membrane retention of Ntcp. J. Biol. Chem. 280: 33687–33692. https://doi.org/10.1074/jbc.m502151200. - PubMed
  4. Ballow, M., Margolis, C.Z., Schachtel, B., and Hsia, Y.E. (1973). Progressive familial intrahepatic cholestasis. Pediatrics 51: 998–1007. - PubMed
  5. Berge, K.E., Tian, H., Graf, G.A., Yu, L., Grishin, N.V., Schultz, J., Kwiterovich, P., Shan, B., Barnes, R., and Hobbs, H.H. (2000). Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 290: 1771–1775. https://doi.org/10.1126/science.290.5497.1771. - PubMed
  6. Beuers, U., Bilzer, M., Chittattu, A., Kullak-Ublick, G.A., Keppler, D., Paumgartner, G., and Dombrowski, F. (2001). Tauroursodeoxycholic acid inserts the apical conjugate export pump, Mrp2, into canalicular membranes and stimulates organic anion secretion by protein kinase C-dependent mechanisms in cholestatic rat liver. Hepatology 33: 1206–1216. https://doi.org/10.1053/jhep.2001.24034. - PubMed
  7. Beuers, U., Hohenester, S., de Buy Wenniger, L.J., Kremer, A.E., Jansen, P.L., and Elferink, R.P. (2010). The biliary HCO(3)(-) umbrella: a unifying hypothesis on pathogenetic and therapeutic aspects of fibrosing cholangiopathies. Hepatology 52: 1489–1496. https://doi.org/10.1002/hep.23810. - PubMed
  8. Bogomolov, P., Alexandrov, A., Voronkova, N., Macievich, M., Kokina, K., Petrachenkova, M., Lehr, T., Lempp, F.A., Wedemeyer, H., Haag, M., et al. (2016). Treatment of chronic hepatitis D with the entry inhibitor myrcludex B: first results of a phase Ib/IIa study. J. Hepatol. 65: 490–498. https://doi.org/10.1016/j.jhep.2016.04.016. - PubMed
  9. Bonus, M., Sommerfeld, A., Qvartskhava, N., Gorg, B., Ludwig, B.S., Kessler, H., Gohlke, H., and Häussinger, D. (2020). Evidence for functional selectivity in TUDC- and norUDCA-induced signal transduction via α5β1 integrin towards choleresis. Sci. Rep. 10: 5795. https://doi.org/10.1038/s41598-020-62326-y. - PubMed
  10. Brenard, R., Geubel, A.P., and Benhamou, J.P. (1989). Benign recurrent intrahepatic cholestasis. A report of 26 cases. J. Clin. Gastroenterol. 11: 546–551. https://doi.org/10.1097/00004836-198910000-00011. - PubMed
  11. Brinkert, F., Pukite, I., Krebs-Schmitt, D., Briem-Richter, A., Stindt, J., Häussinger, D., Keitel, V., Muller, I., and Grabhorn, E. (2018). Allogeneic haematopoietic stem cell transplantation eliminates alloreactive inhibitory antibodies after liver transplantation for bile salt export pump deficiency. J. Hepatol. 69: 961–965. https://doi.org/10.1016/j.jhep.2018.06.003. - PubMed
  12. Bull, L.N., Carlton, V.E., Stricker, N.L., Baharloo, S., DeYoung, J.A., Freimer, N.B., Magid, M.S., Kahn, E., Markowitz, J., DiCarlo, F.J., et al. (1997). Genetic and morphological findings in progressive familial intrahepatic cholestasis (Byler disease [PFIC-1] and Byler syndrome): evidence for heterogeneity. Hepatology 26: 155–164. https://doi.org/10.1002/hep.510260121. - PubMed
  13. Bull, L.N., van Eijk, M.J., Pawlikowska, L., DeYoung, J.A., Juijn, J.A., Liao, M., Klomp, L.W., Lomri, N., Berger, R., Scharschmidt, B.F., et al. (1998). A gene encoding a P-type ATPase mutated in two forms of hereditary cholestasis. Nat. Genet. 18: 219–224. https://doi.org/10.1038/ng0398-219. - PubMed
  14. Byrne, J.A., Strautnieks, S.S., Mieli-Vergani, G., Higgins, C.F., Linton, K.J., and Thompson, R.J. (2002). The human bile salt export pump: characterization of substrate specificity and identification of inhibitors. Gastroenterology 123: 1649–1658. https://doi.org/10.1053/gast.2002.36591. - PubMed
  15. Cantore, M., Reinehr, R., Sommerfeld, A., Becker, M., and Häussinger, D. (2011). The Src family kinase Fyn mediates hyperosmolarity-induced Mrp2 and Bsep retrieval from canalicular membrane. J. Biol. Chem. 286: 45014–45029. https://doi.org/10.1074/jbc.m111.292896. - PubMed
  16. Cao, H., Chen, Z.X., Wang, K., Ning, M.M., Zou, Q.A., Feng, Y., Ye, Y.L., Leng, Y., and Shen, J.H. (2016). Intestinally-targeted TGR5 agonists equipped with quaternary ammonium have an improved hypoglycemic effect and reduced gallbladder filling effect. Sci. Rep. 6: 28676. https://doi.org/10.1038/srep28676. - PubMed
  17. Chappell, L.C., Bell, J.L., Smith, A., Linsell, L., Juszczak, E., Dixon, P.H., Chambers, J., Hunter, R., Dorling, J., and Williamson, C., et al., PITCHES Study Group (2019). Ursodeoxycholic acid versus placebo in women with intrahepatic cholestasis of pregnancy (PITCHES): a randomised controlled trial. Lancet 394: 849–860, https://doi.org/10.1016/S0140-6736(19)31270-X. 31378395. - PubMed
  18. Chaudhari, S.N., Harris, D.A., Aliakbarian, H., Luo, J.N., Henke, M.T., Subramaniam, R., Vernon, A.H., Tavakkoli, A., Sheu, E.G., and Devlin, A.S. (2021). Bariatric surgery reveals a gut-restricted TGR5 agonist with anti-diabetic effects. Nat. Chem. Biol. 17: 20–29. https://doi.org/10.1038/s41589-020-0604-z. - PubMed
  19. Childs, S., Yeh, R.L., Georges, E., and Ling, V. (1995). Identification of a sister gene to P-glycoprotein. Cancer Res. 55: 2029–2034. - PubMed
  20. Chloupkova, M., Pickert, A., Lee, J.Y., Souza, S., Trinh, Y.T., Connelly, S.M., Dumont, M.E., Dean, M., and Urbatsch, I.L. (2007). Expression of 25 human ABC transporters in the yeast Pichia pastoris and characterization of the purified ABCC3 ATPase activity. Biochemistry 46: 7992–8003. https://doi.org/10.1021/bi700020m. - PubMed
  21. Clucas, J. and Valderrama, F. (2014). ERM proteins in cancer progression. J. Cell Sci. 127: 267–275. https://doi.org/10.1242/jcs.133108. - PubMed
  22. Dawson, R.J. and Locher, K.P. (2006). Structure of a bacterial multidrug ABC transporter. Nature 443: 180–185. https://doi.org/10.1038/nature05155. - PubMed
  23. de Vries, E., Mazzetti, M., Takkenberg, B., Mostafavi, N., Bikker, H., Marzioni, M., de Veer, R., van der Meer, A., Doukas, M., Verheij, J., et al. (2020). Carriers of ABCB4 gene variants show a mild clinical course, but impaired quality of life and limited risk for cholangiocarcinoma. Liver Int. 40: 3042–3050. https://doi.org/10.1111/liv.14662. - PubMed
  24. Deutschmann, K., Reich, M., Klindt, C., Dröge, C., Spomer, L., Häussinger, D., and Keitel, V. (2018). Bile acid receptors in the biliary tree: TGR5 in physiology and disease. Biochim. Biophys. Acta 1864: 1319–1325. https://doi.org/10.1016/j.bbadis.2017.08.021. - PubMed
  25. Droge, C., Bonus, M., Baumann, U., Klindt, C., Lainka, E., Kathemann, S., Brinkert, F., Grabhorn, E., Pfister, E.D., Wenning, D., et al. (2017). Sequencing of FIC1, BSEP and MDR3 in a large cohort of patients with cholestasis revealed a high number of different genetic variants. J. Hepatol. 67: 1253–1264. https://doi.org/10.1016/j.jhep.2017.07.004. - PubMed
  26. Duan, H., Ning, M., Zou, Q., Ye, Y., Feng, Y., Zhang, L., Leng, Y., and Shen, J. (2015). Discovery of intestinal targeted TGR5 agonists for the treatment of type 2 diabetes. J. Med. Chem. 58: 3315–3328. https://doi.org/10.1021/jm500829b. - PubMed
  27. Dzagania, T., Engelmann, G., Häussinger, D., Schmitt, L., Flechtenmacher, C., Rtskhiladze, I., and Kubitz, R. (2012). The histidin-loop is essential for transport activity of human MDR3. A novel mutation of MDR3 in a patient with progressive familial intrahepatic cholestasis type 3. Gene 506: 141–145. https://doi.org/10.1016/j.gene.2012.06.029. - PubMed
  28. Ellinger, P., Kluth, M., Stindt, J., Smits, S.H., and Schmitt, L. (2013). Detergent screening and purification of the human liver ABC transporters BSEP (ABCB11) and MDR3 (ABCB4) expressed in the yeast Pichia pastoris. PLoS One 8: e60620. https://doi.org/10.1371/journal.pone.0060620. - PubMed
  29. Ellinger, P., Stindt, J., Droge, C., Sattler, K., Stross, C., Kluge, S., Herebian, D., Smits, S.H.J., Burdelski, M., Schulz-Jurgensen, S., et al. (2017). Partial external biliary diversion in bile salt export pump deficiency: association between outcome and mutation. World J. Gastroenterol. 23: 5295–5303. https://doi.org/10.3748/wjg.v23.i29.5295. - PubMed
  30. Eloranta, J.J. and Kullak-Ublick, G.A. (2005). Coordinate transcriptional regulation of bile acid homeostasis and drug metabolism. Arch. Biochem. Biophys. 433: 397–412. https://doi.org/10.1016/j.abb.2004.09.019. - PubMed
  31. Erice, O., Labiano, I., Arbelaiz, A., Santos-Laso, A., Munoz-Garrido, P., Jimenez-Aguero, R., Olaizola, P., Caro-Maldonado, A., Martin-Martin, N., Carracedo, A., et al. (2018). Differential effects of FXR or TGR5 activation in cholangiocarcinoma progression. Biochim. Biophys. Acta 1864: 1335–1344. https://doi.org/10.1016/j.bbadis.2017.08.016. - PubMed
  32. European Association for the Study of the, L (2009). EASL Clinical Practice Guidelines: management of cholestatic liver diseases. J. Hepatol. 51: 237–267. https://doi.org/10.1016/j.jhep.2009.04.009. - PubMed
  33. Evason, K., Bove, K.E., Finegold, M.J., Knisely, A.S., Rhee, S., Rosenthal, P., Miethke, A.G., Karpen, S.J., Ferrell, L.D., and Kim, G.E. (2011). Morphologic findings in progressive familial intrahepatic cholestasis 2 (PFIC2): correlation with genetic and immunohistochemical studies. Am. J. Surg. Pathol. 35: 687–696. https://doi.org/10.1097/pas.0b013e318212ec87. - PubMed
  34. Fisher, M.M. and Yousef, I.M. (1973). Sex differences in the bile acid composition of human bile: studies in patients with and without gallstones. Can. Med. Assoc. J. 109: 190–193. - PubMed
  35. Garcia-Canaveras, J.C., Donato, M.T., and Lahoz, A. (2014). Ultra-performance liquid chromatography-mass spectrometry targeted profiling of bile acids: application to serum, liver tissue, and cultured cells of different species. Methods Mol. Biol. 1198: 233–247. https://doi.org/10.1007/978-1-4939-1258-2_15. - PubMed
  36. Gerloff, T., Stieger, B., Hagenbuch, B., Madon, J., Landmann, L., Roth, J., Hofmann, A.F., and Meier, P.J. (1998). The sister of P-glycoprotein represents the canalicular bile salt export pump of mammalian liver. J. Biol. Chem. 273: 10046–10050. https://doi.org/10.1074/jbc.273.16.10046. - PubMed
  37. Gertzen, C.G., Spomer, L., Smits, S.H., Häussinger, D., Keitel, V., and Gohlke, H. (2015). Mutational mapping of the transmembrane binding site of the G-protein coupled receptor TGR5 and binding mode prediction of TGR5 agonists. Eur. J. Med. Chem. 104: 57–72. https://doi.org/10.1016/j.ejmech.2015.09.024. - PubMed
  38. Glantz, A., Marschall, H.U., and Mattsson, L.A. (2004). Intrahepatic cholestasis of pregnancy: relationships between bile acid levels and fetal complication rates. Hepatology 40: 467–474. https://doi.org/10.1002/hep.20336. - PubMed
  39. Gohlke, H., Schmitz, B., Sommerfeld, A., Reinehr, R., and Häussinger, D. (2013). alpha5 beta1-integrins are sensors for tauroursodeoxycholic acid in hepatocytes. Hepatology 57: 1117–1129. https://doi.org/10.1002/hep.25992. - PubMed
  40. Greife, A., Felekyan, S., Ma, Q., Gertzen, C.G., Spomer, L., Dimura, M., Peulen, T.O., Wohler, C., Häussinger, D., Gohlke, H., et al. (2016). Structural assemblies of the di- and oligomeric G-protein coupled receptor TGR5 in live cells: an MFIS-FRET and integrative modelling study. Sci. Rep. 6: 36792. https://doi.org/10.1038/srep36792. - PubMed
  41. Griffiths, W.J. and Sjovall, J. (2010). Bile acids: analysis in biological fluids and tissues. J. Lipid Res. 51: 23–41. https://doi.org/10.1194/jlr.r001941. - PubMed
  42. Groen, A., Romero, M.R., Kunne, C., Hoosdally, S.J., Dixon, P.H., Wooding, C., Williamson, C., Seppen, J., Van den Oever, K., Mok, K.S., et al. (2011). Complementary functions of the flippase ATP8B1 and the floppase ABCB4 in maintaining canalicular membrane integrity. Gastroenterology 141: 1927–1937, e1921-1924. https://doi.org/10.1053/j.gastro.2011.07.042. - PubMed
  43. Guarino, M.P., Cocca, S., Altomare, A., Emerenziani, S., and Cicala, M. (2013). Ursodeoxycholic acid therapy in gallbladder disease, a story not yet completed. World J. Gastroenterol. 19: 5029–5034. https://doi.org/10.3748/wjg.v19.i31.5029. - PubMed
  44. Guyot, C., Hofstetter, L., and Stieger, B. (2014). Differential effects of membrane cholesterol content on the transport activity of multidrug resistance-associated protein 2 (ABCC2) and of the bile salt export pump (ABCB11). Mol. Pharmacol. 85: 909–920. https://doi.org/10.1124/mol.114.092262. - PubMed
  45. Hagenbuch, B. and Meier, P.J. (2004). Organic anion transporting polypeptides of the OATP/SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Pflüger’s Arch 447: 653–665. https://doi.org/10.1007/s00424-003-1168-y. - PubMed
  46. Hagenbuch, B., Stieger, B., Foguet, M., Lubbert, H., and Meier, P.J. (1991). Functional expression cloning and characterization of the hepatocyte Na+/bile acid cotransport system. Proc. Natl. Acad. Sci. U.S.A. 88: 10629–10633. https://doi.org/10.1073/pnas.88.23.10629. - PubMed
  47. Häussinger, D., Hallbrucker, C., Saha, N., Lang, F., and Gerok, W. (1992). Cell volume and bile acid excretion. Biochem. J. 288: 681–689. https://doi.org/10.1042/bj2880681. - PubMed
  48. Häussinger, D., Kurz, A.K., Wettstein, M., Graf, D., Vom Dahl, S., and Schliess, F. (2003). Involvement of integrins and Src in tauroursodeoxycholate-induced and swelling-induced choleresis. Gastroenterology 124: 1476–1487. https://doi.org/10.1016/s0016-5085(03)00274-9. - PubMed
  49. Häussinger, D., Schmitt, M., Weiergraber, O., and Kubitz, R. (2000). Short-term regulation of canalicular transport. Semin. Liver Dis. 20: 307–321. https://doi.org/10.1055/s-2000-9386. - PubMed
  50. Hayashi, H. and Sugiyama, Y. (2009). Short-chain ubiquitination is associated with the degradation rate of a cell-surface-resident bile salt export pump (BSEP/ABCB11). Mol. Pharmacol. 75: 143–150. https://doi.org/10.1124/mol.108.049288. - PubMed
  51. Hayashi, H., Takada, T., Suzuki, H., Onuki, R., Hofmann, A.F., and Sugiyama, Y. (2005). Transport by vesicles of glycine- and taurine-conjugated bile salts and taurolithocholate 3-sulfate: a comparison of human BSEP with rat Bsep. Biochim. Biophys. Acta 1738: 54–62. https://doi.org/10.1016/j.bbalip.2005.10.006. - PubMed
  52. Herebian, D. and Mayatepek, E. (2011). Inborn errors of bile acid metabolism and their diagnostic confirmation by means of mass spectrometry. J. Pediatr. Sci. 3: 1–11. - PubMed
  53. Hiller, C., Kuhhorn, J., and Gmeiner, P. (2013). Class A G-protein-coupled receptor (GPCR) dimers and bivalent ligands. J. Med. Chem. 56: 6542–6559. https://doi.org/10.1021/jm4004335. - PubMed
  54. Hofmann, A.F. (1984). Chemistry and enterohepatic circulation of bile acids. Hepatology 4: 4S–14S. https://doi.org/10.1002/hep.1840040803. - PubMed
  55. Hoque, M.T., Conseil, G., and Cole, S.P. (2009). Involvement of NHERF1 in apical membrane localization of MRP4 in polarized kidney cells. Biochem. Biophys. Res. Commun. 379: 60–64. https://doi.org/10.1016/j.bbrc.2008.12.014. - PubMed
  56. Hu, N.J., Iwata, S., Cameron, A.D., and Drew, D. (2011). Crystal structure of a bacterial homologue of the bile acid sodium symporter ASBT. Nature 478: 408–411. https://doi.org/10.1038/nature10450. - PubMed
  57. Jacquemin, E. (2001). Role of multidrug resistance 3 deficiency in pediatric and adult liver disease: one gene for three diseases. Semin. Liver Dis. 21: 551–562. https://doi.org/10.1055/s-2001-19033. - PubMed
  58. Jara, P., Hierro, L., Martinez-Fernandez, P., Alvarez-Doforno, R., Yanez, F., Diaz, M.C., Camarena, C., De la Vega, A., Frauca, E., Munoz-Bartolo, G., et al. (2009). Recurrence of bile salt export pump deficiency after liver transplantation. N. Engl. J. Med. 361: 1359–1367. https://doi.org/10.1056/nejmoa0901075. - PubMed
  59. Jin, M.S., Oldham, M.L., Zhang, Q., and Chen, J. (2012). Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans. Nature 490: 566–569, doi:https://doi.org/10.2210/pdb4f4c/pdb. - PubMed
  60. Johnson, B.J., Lee, J.Y., Pickert, A., and Urbatsch, I.L. (2010). Bile acids stimulate ATP hydrolysis in the purified cholesterol transporter ABCG5/G8. Biochemistry 49: 3403–3411. https://doi.org/10.1021/bi902064g. - PubMed
  61. Jung, D., Hagenbuch, B., Fried, M., Meier, P.J., and Kullak-Ublick, G.A. (2004). Role of liver-enriched transcription factors and nuclear receptors in regulating the human, mouse, and rat NTCP gene. Am. J. Physiol. Gastrointest. Liver Physiol. 286: G752–G761. https://doi.org/10.1152/ajpgi.00456.2003. - PubMed
  62. Katritch, V. and Abagyan, R. (2011). GPCR agonist binding revealed by modeling and crystallography. Trends Pharmacol. Sci. 32: 637–643. https://doi.org/10.1016/j.tips.2011.08.001. - PubMed
  63. Katritch, V., Cherezov, V., and Stevens, R.C. (2013). Structure-function of the G-protein-coupled receptor superfamily. Annu. Rev. Pharmacol. Toxicol. 53: 531. https://doi.org/10.1146/annurev-pharmtox-032112-135923. - PubMed
  64. Kawamata, Y., Fujii, R., Hosoya, M., Harada, M., Yoshida, H., Miwa, M., Fukusumi, S., Habata, Y., Itoh, T., Shintani, Y., et al. (2003). A G protein-coupled receptor responsive to bile acids. J. Biol. Chem. 278: 9435–9440. https://doi.org/10.1074/jbc.m209706200. - PubMed
  65. Keitel, V., Burdelski, M., Vojnisek, Z., Schmitt, L., Häussinger, D., and Kubitz, R. (2009). De novo bile salt transporter antibodies as a possible cause of recurrent graft failure after liver transplantation: a novel mechanism of cholestasis. Hepatology 50: 510–517. https://doi.org/10.1002/hep.23083. - PubMed
  66. Keitel, V., Burdelski, M., Warskulat, U., Kuhlkamp, T., Keppler, D., Häussinger, D., and Kubitz, R. (2005). Expression and localization of hepatobiliary transport proteins in progressive familial intrahepatic cholestasis. Hepatology 41: 1160–1172. https://doi.org/10.1002/hep.20682. - PubMed
  67. Keitel, V., Droge, C., and Häussinger, D. (2019a). Targeting FXR in cholestasis. Handb. Exp. Pharmacol. 256: 299–324. https://doi.org/10.1007/164_2019_231. - PubMed
  68. Keitel, V., Droge, C., Stepanow, S., Fehm, T., Mayatepek, E., Kohrer, K., and Häussinger, D. (2016). Intrahepatic cholestasis of pregnancy (ICP): case report and review of the literature. Z. Gastroenterol. 54: 1327–1333. https://doi.org/10.1055/s-0042-118388. - PubMed
  69. Keitel, V., Gertzen, C.G.W., Schäfer, S., Klindt, C., Wöhler, C., Deutschmann, K., Reich, M., Gohlke, H., and Häussinger, D. (2020). Bile acids and TGR5 (Gpbar1) signaling. In: Rozman, R., and Gebhardt, G. (Eds.), Mammalian sterols. Springer Nature, Switzerland. - PubMed
  70. Keitel, V., Görg, B., Bidmon, H.J., Zemtsova, I., Spomer, L., Zilles, K., and Häussinger, D. (2010). The bile acid receptor TGR5 (Gpbar-1) acts as a neurosteroid receptor in brain. Glia 58: 1794–1805. https://doi.org/10.1002/glia.21049. - PubMed
  71. Keitel, V. and Häussinger, D. (2012). Perspective: TGR5 (Gpbar-1) in liver physiology and disease. Clin Res Hepatol Gastroenterol 36: 412–419. https://doi.org/10.1016/j.clinre.2012.03.008. - PubMed
  72. Keitel, V., and Häussinger, D. (2018). Role of TGR5 (GPBAR1) in liver disease. Semin. Liver Dis. 333–339, doi:https://doi.org/10.1055/s-0038-1669940. - PubMed
  73. Keitel, V., Kubitz, R., and Häussinger, D. (2008). Endocrine and paracrine role of bile acids. World J. Gastroenterol. 14: 5620–5629. https://doi.org/10.3748/wjg.14.5620. - PubMed
  74. Keitel, V., Spomer, L., Marin, J.J., Williamson, C., Geenes, V., Kubitz, R., Häussinger, D., and Macias, R.I. (2013). Effect of maternal cholestasis on TGR5 expression in human and rat placenta at term. Placenta 34: 810–816. https://doi.org/10.1016/j.placenta.2013.06.302. - PubMed
  75. Keitel, V., Stindt, J., and Häussinger, D. (2019b). Bile acid-activated receptors: GPBAR1 (TGR5) and other G protein-coupled receptors. Handb. Exp. Pharmacol. 256: 19–49. https://doi.org/10.1007/164_2019_230. - PubMed
  76. Keitel, V., Vogt, C., Häussinger, D., and Kubitz, R. (2006). Combined mutations of canalicular transporter proteins cause severe intrahepatic cholestasis of pregnancy. Gastroenterology 131: 624–629. https://doi.org/10.1053/j.gastro.2006.05.003. - PubMed
  77. Kis, E., Ioja, E., Nagy, T., Szente, L., Heredi-Szabo, K., and Krajcsi, P. (2009). Effect of membrane cholesterol on BSEP/Bsep activity: species specificity studies for substrates and inhibitors. Drug Metab. Dispos. 37: 1878–1886. https://doi.org/10.1124/dmd.108.024778. - PubMed
  78. Klindt, C., Reich, M., Hellwig, B., Stindt, J., Rahnenfuhrer, J., Hengstler, J.G., Kohrer, K., Schoonjans, K., Häussinger, D., and Keitel, V. (2019). The G protein-coupled bile acid receptor TGR5 (Gpbar1) modulates endothelin-1 signaling in liver. Cells 8. https://doi.org/10.3390/cells8111467. - PubMed
  79. Kluth, M., Stindt, J., Droge, C., Linnemann, D., Kubitz, R., and Schmitt, L. (2015). A mutation within the extended X loop abolished substrate-induced ATPase activity of the human liver ATP-binding cassette (ABC) transporter MDR3. J. Biol. Chem. 290: 4896–4907. https://doi.org/10.1074/jbc.m114.588566. - PubMed
  80. Knisely, A.S., Strautnieks, S.S., Meier, Y., Stieger, B., Byrne, J.A., Portmann, B.C., Bull, L.N., Pawlikowska, L., Bilezikci, B., Ozcay, F., et al. (2006). Hepatocellular carcinoma in ten children under five years of age with bile salt export pump deficiency. Hepatology 44: 478–486. https://doi.org/10.1002/hep.21287. - PubMed
  81. Konig, J., Cui, Y., Nies, A.T., and Keppler, D. (2000). Localization and genomic organization of a new hepatocellular organic anion transporting polypeptide. J. Biol. Chem. 275: 23161–23168. https://doi.org/10.1074/jbc.m001448200. - PubMed
  82. Kubitz, R., D’Urso, D., Keppler, D., and Häussinger, D. (1997). Osmodependent dynamic localization of the multidrug resistance protein 2 in the rat hepatocyte canalicular membrane. Gastroenterology 113: 1438–1442. https://doi.org/10.1053/gast.1997.v113.pm9352844. - PubMed
  83. Kroll, T., Prescher, M., Smits, S.H.J., and Schmitt, L. (2021). Structure and function of hepatobiliary ATP binding cassette transporters. Chem. Rev. 121: 5240–5288, doi:https://doi.org/10.1021/acs.chemrev.0c00659. - PubMed
  84. Kubitz, R., Droge, C., Kluge, S., Stindt, J., and Häussinger, D. (2014). Genetic variations of bile salt transporters. Drug Discov. Today Technol. 12: e55–67. https://doi.org/10.1016/j.ddtec.2014.03.006. - PubMed
  85. Kubitz, R., Droge, C., Kluge, S., Stross, C., Walter, N., Keitel, V., Häussinger, D., and Stindt, J. (2015). Autoimmune BSEP disease: disease recurrence after liver transplantation for progressive familial intrahepatic cholestasis. Clin. Rev. Allergy Immunol. 48: 273–284. https://doi.org/10.1007/s12016-014-8457-4. - PubMed
  86. Kubitz, R., Keitel, V., Scheuring, S., Kohrer, K., and Häussinger, D. (2006). Benign recurrent intrahepatic cholestasis associated with mutations of the bile salt export pump. J. Clin. Gastroenterol. 40: 171–175. https://doi.org/10.1097/01.mcg.0000196406.15110.60. - PubMed
  87. Kurz, A.K., Graf, D., Schmitt, M., Vom Dahl, S., and Häussinger, D. (2001). Tauroursodesoxycholate-induced choleresis involves p38(MAPK) activation and translocation of the bile salt export pump in rats. Gastroenterology 121: 407–419. https://doi.org/10.1053/gast.2001.26262. - PubMed
  88. Lammert, F., Marschall, H.U., and Matern, S. (2003). Intrahepatic cholestasis of pregnancy. Curr. Treat. Options Gastroenterol. 6: 123–132. https://doi.org/10.1007/s11938-003-0013-x. - PubMed
  89. Lazaridis, K.N., Gores, G.J., and Lindor, K.D. (2001). Ursodeoxycholic acid ’mechanisms of action and clinical use in hepatobiliary disorders. J. Hepatol. 35: 134–146. https://doi.org/10.1016/s0168-8278(01)00092-7. - PubMed
  90. Lefebvre, P., Cariou, B., Lien, F., Kuipers, F., and Staels, B. (2009). Role of bile acids and bile acid receptors in metabolic regulation. Physiol. Rev. 89: 147–191. https://doi.org/10.1152/physrev.00010.2008. - PubMed
  91. Leuthold, S., Hagenbuch, B., Mohebbi, N., Wagner, C.A., Meier, P.J., and Stieger, B. (2009). Mechanisms of pH-gradient driven transport mediated by organic anion polypeptide transporters. Am. J. Physiol. Cell Physiol. 296: C570–C582. https://doi.org/10.1152/ajpcell.00436.2008. - PubMed
  92. Li, M., Wang, W., Soroka, C.J., Mennone, A., Harry, K., Weinman, E.J., and Boyer, J.L. (2010). NHERF-1 binds to Mrp2 and regulates hepatic Mrp2 expression and function. J. Biol. Chem. 285: 19299–19307. https://doi.org/10.1074/jbc.m109.096081. - PubMed
  93. Locher, K.P. (2016). Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat. Struct. Mol. Biol. 23: 487–493. https://doi.org/10.1038/nsmb.3216. - PubMed
  94. Makishima, M., Okamoto, A.Y., Repa, J.J., Tu, H., Learned, R.M., Luk, A., Hull, M.V., Lustig, K.D., Mangelsdorf, D.J., and Shan, B. (1999). Identification of a nuclear receptor for bile acids. Science 284: 1362–1365. https://doi.org/10.1126/science.284.5418.1362. - PubMed
  95. Martin, R.E., Bissantz, C., Gavelle, O., Kuratli, C., Dehmlow, H., Richter, H.G., Obst Sander, U., Erickson, S.D., Kim, K., Pietranico-Cole, S.L., et al. (2013). 2-Phenoxy-nicotinamides are potent agonists at the bile acid receptor GPBAR1 (TGR5). ChemMedChem 8: 569–576. https://doi.org/10.1002/cmdc.201200474. - PubMed
  96. Maruyama, T., Miyamoto, Y., Nakamura, T., Tamai, Y., Okada, H., Sugiyama, E., Nakamura, T., Itadani, H., and Tanaka, K. (2002). Identification of membrane-type receptor for bile acids (M-BAR). Biochem. Biophys. Res. Commun. 298: 714–719. https://doi.org/10.1016/s0006-291x(02)02550-0. - PubMed
  97. Maruyama, T., Tanaka, K., Suzuki, J., Miyoshi, H., Harada, N., Nakamura, T., Miyamoto, Y., Kanatani, A., and Tamai, Y. (2006). Targeted disruption of G protein-coupled bile acid receptor 1 (Gpbar1/M-Bar) in mice. J. Endocrinol. 191: 197–205. https://doi.org/10.1677/joe.1.06546. - PubMed
  98. Mashige, F., Tanaka, N., Maki, A., Kamei, S., and Yamanaka, M. (1981). Direct spectrophotometry of total bile acids in serum. Clin. Chem. 27: 1352–1356. https://doi.org/10.1093/clinchem/27.8.1352. - PubMed
  99. Masyuk, T.V., Masyuk, A.I., Lorenzo Pisarello, M., Howard, B.N., Huang, B.Q., Lee, P.Y., Fung, X., Sergienko, E., Ardecky, R.J., Chung, T.D.Y., et al. (2017). TGR5 contributes to hepatic cystogenesis in rodents with polycystic liver diseases through cyclic adenosine monophosphate/Galphas signaling. Hepatology 66: 1197–1218. https://doi.org/10.1002/hep.29284. - PubMed
  100. Mayer, P.G.K., Qvartskhava, N., Sommerfeld, A., Gorg, B., and Häussinger, D. (2019). Regulation of plasma membrane localization of the Na(+)-Taurocholate Co-transporting polypeptide by glycochenodeoxycholate and tauroursodeoxycholate. Cell. Physiol. Biochem. 52: 1427–1445. https://doi.org/10.33594/000000100. - PubMed
  101. Merlen, G., Kahale, N., Ursic-Bedoya, J., Bidault-Jourdainne, V., Simerabet, H., Doignon, I., Tanfin, Z., Garcin, I., Pean, N., Gautherot, J., et al. (2020). TGR5-dependent hepatoprotection through the regulation of biliary epithelium barrier function. Gut 69: 146–157. https://doi.org/10.1136/gutjnl-2018-316975. - PubMed
  102. Mihalik, S.J., Steinberg, S.J., Pei, Z., Park, J., Kim, D.G., Heinzer, A.K., Dacremont, G., Wanders, R.J., Cuebas, D.A., Smith, K.D., et al. (2002). Participation of two members of the very long-chain acyl-CoA synthetase family in bile acid synthesis and recycling. J. Biol. Chem. 277: 24771–24779. https://doi.org/10.1074/jbc.m203295200. - PubMed
  103. Morgan, R.E., Trauner, M., van Staden, C.J., Lee, P.H., Ramachandran, B., Eschenberg, M., Afshari, C.A., Qualls, C.W.Jr., Lightfoot-Dunn, R., and Hamadeh, H.K. (2010). Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development. Toxicol. Sci. 118: 485–500. https://doi.org/10.1093/toxsci/kfq269. - PubMed
  104. Mukhopadhayay, S., Ananthanarayanan, M., Stieger, B., Meier, P.J., Suchy, F.J., and Anwer, M.S. (1997). cAMP increases liver Na+-taurocholate cotransport by translocating transporter to plasma membranes. Am. J. Physiol. 273: G842–G848. https://doi.org/10.1152/ajpgi.1997.273.4.g842. - PubMed
  105. Ni, Y., Lempp, F.A., Mehrle, S., Nkongolo, S., Kaufman, C., Falth, M., Stindt, J., Koniger, C., Nassal, M., Kubitz, R., et al. (2014). Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes. Gastroenterology 146: 1070–1083. https://doi.org/10.1053/j.gastro.2013.12.024. - PubMed
  106. Noe, J., Hagenbuch, B., Meier, P.J., and St-Pierre, M.V. (2001). Characterization of the mouse bile salt export pump overexpressed in the baculovirus system. Hepatology 33: 1223–1231. https://doi.org/10.1053/jhep.2001.24171. - PubMed
  107. Noe, J., Stieger, B., and Meier, P.J. (2002). Functional expression of the canalicular bile salt export pump of human liver. Gastroenterology 123: 1659–1666. https://doi.org/10.1053/gast.2002.36587. - PubMed
  108. Ogimura, E., Sekine, S., and Horie, T. (2011). Bile salt export pump inhibitors are associated with bile acid-dependent drug-induced toxicity in sandwich-cultured hepatocytes. Biochem. Biophys. Res. Commun. 416: 313–317. https://doi.org/10.1016/j.bbrc.2011.11.032. - PubMed
  109. Oizumi, K., Sekine, S., Fukagai, M., Susukida, T., and Ito, K. (2017). Identification of bile acids responsible for inhibiting the bile salt export pump, leading to bile acid accumulation and cell toxicity in rat hepatocytes. J. Pharm. Sci. 106: 2412–2419, https://doi.org/10.1016/j.xphs.2017.05.017. 28552691. - PubMed
  110. Ovadia, C., Seed, P.T., Sklavounos, A., Geenes, V., Di Ilio, C., Chambers, J., Kohari, K., Bacq, Y., Bozkurt, N., Brun-Furrer, R., et al. (2019). Association of adverse perinatal outcomes of intrahepatic cholestasis of pregnancy with biochemical markers: results of aggregate and individual patient data meta-analyses. Lancet 393: 899–909. https://doi.org/10.1016/s0140-6736(18)31877-4. - PubMed
  111. Parks, D.J., Blanchard, S.G., Bledsoe, R.K., Chandra, G., Consler, T.G., Kliewer, S.A., Stimmel, J.B., Willson, T.M., Zavacki, A.M., Moore, D.D., et al. (1999). Bile acids: natural ligands for an orphan nuclear receptor. Science 284: 1365–1368. https://doi.org/10.1126/science.284.5418.1365. - PubMed
  112. Patowary, S., Alvarez-Curto, E., Xu, T.R., Holz, J.D., Oliver, J.A., Milligan, G., and Raicu, V. (2013). The muscarinic M3 acetylcholine receptor exists as two differently sized complexes at the plasma membrane. Biochem. J. 452: 303–312. https://doi.org/10.1042/bj20121902. - PubMed
  113. Paulusma, C.C., Groen, A., Kunne, C., Ho-Mok, K.S., Spijkerboer, A.L., Rudi de Waart, D., Hoek, F.J., Vreeling, H., Hoeben, K.A., van Marle, J., et al. (2006). Atp8b1 deficiency in mice reduces resistance of the canalicular membrane to hydrophobic bile salts and impairs bile salt transport. Hepatology 44: 195–204. https://doi.org/10.1002/hep.21212. - PubMed
  114. Paumgartner, G. and Beuers, U. (2002). Ursodeoxycholic acid in cholestatic liver disease: mechanisms of action and therapeutic use revisited. Hepatology 36: 525–531. https://doi.org/10.1053/jhep.2002.36088. - PubMed
  115. Pellicciari, R., Gioiello, A., Macchiarulo, A., Thomas, C., Rosatelli, E., Natalini, B., Sardella, R., Pruzanski, M., Roda, A., Pastorini, E., et al. (2009). Discovery of 6α-ethyl-23(S)-methylcholic acid (S-EMCA, INT-777) as a potent and selective agonist for the TGR5 receptor, a novel target for diabesity. J. Med. Chem. 52: 7958–7961. https://doi.org/10.1021/jm901390p. - PubMed
  116. Prescher, M., Kroll, T., and Schmitt, L. (2019). ABCB4/MDR3 in health and disease - at the crossroads of biochemistry and medicine. Biol. Chem. 400: 1245–1259. https://doi.org/10.1515/hsz-2018-0441. - PubMed
  117. Prescher, M., Smits, S.H.J., and Schmitt, L. (2020). Stimulation of ABCB4/MDR3 ATPase activity requires an intact phosphatidylcholine lipid. J. Lipid Res. 61: 1605–1616. https://doi.org/10.1194/jlr.ra120000889. - PubMed
  118. Reich, M., Deutschmann, K., Sommerfeld, A., Klindt, C., Kluge, S., Kubitz, R., Ullmer, C., Knoefel, W.T., Herebian, D., Mayatepek, E., et al. (2016). TGR5 is essential for bile acid-dependent cholangiocyte proliferation in vivo and in vitro. Gut 65: 487–501. https://doi.org/10.1136/gutjnl-2015-309458. - PubMed
  119. Reich, M., Klindt, C., Deutschmann, K., Spomer, L., Häussinger, D., and Keitel, V. (2017). Role of the G protein-coupled bile acid receptor TGR5 in liver damage. Dig. Dis. 35: 235–240. https://doi.org/10.1159/000450917. - PubMed
  120. Reich, M., Spomer, L., Klindt, C., Fuchs, K., Stindt, J., Deutschmann, K., Hohne, J., Liaskou, E., Hov, J.R., Karlsen, T.H., et al. (2021). Downregulation of TGR5 (GPBAR1) in biliary epithelial cells contributes to the pathogenesis of sclerosing cholangitis. J. Hepatol. https://doi.org/10.1016/j.jhep.2021.03.029. - PubMed
  121. Reinehr, R., Graf, D., and Häussinger, D. (2003). Bile salt-induced hepatocyte apoptosis involves epidermal growth factor receptor-dependent CD95 tyrosine phosphorylation. Gastroenterology 125: 839–853. https://doi.org/10.1016/s0016-5085(03)01055-2. - PubMed
  122. Reinehr, R., Sommerfeld, A., and Häussinger, D. (2013). The Src family kinases: distinct functions of c-Src, Yes, and Fyn in the liver. Biomol. Concepts 4: 129–142. https://doi.org/10.1515/bmc-2012-0047. - PubMed
  123. Ridlon, J.M., Harris, S.C., Bhowmik, S., Kang, D.J., and Hylemon, P.B. (2016). Consequences of bile salt biotransformations by intestinal bacteria. Gut Microb. 7: 22–39. https://doi.org/10.1080/19490976.2015.1127483. - PubMed
  124. Ridlon, J.M., Kang, D.J., and Hylemon, P.B. (2006). Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47: 241–259. https://doi.org/10.1194/jlr.r500013-jlr200. - PubMed
  125. Rioseco, A.J., Ivankovic, M.B., Manzur, A., Hamed, F., Kato, S.R., Parer, J.T., and Germain, A.M. (1994). Intrahepatic cholestasis of pregnancy: a retrospective case-control study of perinatal outcome. Am. J. Obstet. Gynecol. 170: 890–895. https://doi.org/10.1016/s0002-9378(94)70304-3. - PubMed
  126. Sarafian, M.H., Lewis, M.R., Pechlivanis, A., Ralphs, S., McPhail, M.J., Patel, V.C., Dumas, M.E., Holmes, E., and Nicholson, J.K. (2015). Bile acid profiling and quantification in biofluids using ultra-performance liquid chromatography tandem mass spectrometry. Anal. Chem. 87: 9662–9670. https://doi.org/10.1021/acs.analchem.5b01556. - PubMed
  127. Sarenac, T.M. and Mikov, M. (2018). Bile acid synthesis: from nature to the chemical modification and synthesis and their applications as drugs and nutrients. Front. Pharmacol. 9: 939. - PubMed
  128. Sato, H., Macchiarulo, A., Thomas, C., Gioiello, A., Une, M., Hofmann, A.F., Saladin, R., Schoonjans, K., Pellicciari, R., and Auwerx, J. (2008). Novel potent and selective bile acid derivatives as TGR5 agonists: biological screening, structure-activity relationships, and molecular modeling studies. J. Med. Chem. 51: 1831–1841. https://doi.org/10.1021/jm7015864. - PubMed
  129. Schmitt, M., Kubitz, R., Lizun, S., Wettstein, M., and Häussinger, D. (2001). Regulation of the dynamic localization of the rat Bsep gene-encoded bile salt export pump by anisoosmolarity. Hepatology 33: 509–518. https://doi.org/10.1053/jhep.2001.22648. - PubMed
  130. Schmitt, M., Kubitz, R., Wettstein, M., vom Dahl, S., and Häussinger, D. (2000). Retrieval of the mrp2 gene encoded conjugate export pump from the canalicular membrane contributes to cholestasis induced by tert-butyl hydroperoxide and chloro-dinitrobenzene. Biol. Chem. 381: 487–495. https://doi.org/10.1515/bc.2000.063. - PubMed
  131. Schonhoff, C.M., Park, S.W., Webster, C.R., and Anwer, M.S. (2016). p38 MAPK alpha and beta isoforms differentially regulate plasma membrane localization of MRP2. Am. J. Physiol. Gastrointest. Liver Physiol. 310: G999–G1005. https://doi.org/10.1152/ajpgi.00005.2016. - PubMed
  132. Shi, Y., Xiong, J., Sun, D., Liu, W., Wei, F., Ma, S., and Lin, R. (2015). Simultaneous quantification of the major bile acids in artificial Calculus bovis by high-performance liquid chromatography with precolumn derivatization and its application in quality control. J. Separ. Sci. 38: 2753–2762. https://doi.org/10.1002/jssc.201500139. - PubMed
  133. Shin, H.W. and Takatsu, H. (2019). Substrates of P4-ATPases: beyond aminophospholipids (phosphatidylserine and phosphatidylethanolamine). Faseb. J. 33: 3087–3096. https://doi.org/10.1096/fj.201801873r. - PubMed
  134. Short, D.B., Trotter, K.W., Reczek, D., Kreda, S.M., Bretscher, A., Boucher, R.C., Stutts, M.J., and Milgram, S.L. (1998). An apical PDZ protein anchors the cystic fibrosis transmembrane conductance regulator to the cytoskeleton. J. Biol. Chem. 273: 19797–19801. https://doi.org/10.1074/jbc.273.31.19797. - PubMed
  135. Siebold, L., Dick, A.A., Thompson, R., Maggiore, G., Jacquemin, E., Jaffe, R., Strautnieks, S., Grammatikopoulos, T., Horslen, S., Whitington, P.F., et al. (2010). Recurrent low gamma-glutamyl transpeptidase cholestasis following liver transplantation for bile salt export pump (BSEP) disease (posttransplant recurrent BSEP disease). Liver Transplant. 16: 856–863. https://doi.org/10.1002/lt.22074. - PubMed
  136. Small, D.M. (2003). Role of ABC transporters in secretion of cholesterol from liver into bile. Proc. Natl. Acad. Sci. U.S.A. 100: 4–6. https://doi.org/10.1073/pnas.0237205100. - PubMed
  137. Sommerfeld, A., Mayer, P.G., Cantore, M., and Häussinger, D. (2015). Regulation of plasma membrane localization of the Na+-taurocholate cotransporting polypeptide (Ntcp) by hyperosmolarity and tauroursodeoxycholate. J. Biol. Chem. 290: 24237–24254. https://doi.org/10.1074/jbc.m115.666883. - PubMed
  138. Spomer, L., Gertzen, C.G., Schmitz, B., Häussinger, D., Gohlke, H., and Keitel, V. (2014). A membrane-proximal, C-terminal alpha-helix is required for plasma membrane localization and function of the G Protein-coupled receptor (GPCR) TGR5. J. Biol. Chem. 289: 3689–3702. https://doi.org/10.1074/jbc.m113.502344. - PubMed
  139. Stagljar, I., Korostensky, C., Johnsson, N., and te Heesen, S. (1998). A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proc. Natl. Acad. Sci. U.S.A. 95: 5187–5192. https://doi.org/10.1073/pnas.95.9.5187. - PubMed
  140. Stieger, B. (2009). Recent insights into the function and regulation of the bile salt export pump (ABCB11). Curr. Opin. Lipidol. 20: 176–181. https://doi.org/10.1097/mol.0b013e32832b677c. - PubMed
  141. Stindt, J., Ellinger, P., Stross, C., Keitel, V., Häussinger, D., Smits, S.H., Kubitz, R., and Schmitt, L. (2011). Heterologous overexpression and mutagenesis of the human bile salt export pump (ABCB11) using DREAM (Directed REcombination-Assisted Mutagenesis). PLoS One 6: e20562. https://doi.org/10.1371/journal.pone.0020562. - PubMed
  142. Stindt, J., Ellinger, P., Weissenberger, K., Droge, C., Herebian, D., Mayatepek, E., Homey, B., Braun, S., Schulte am Esch, J., Horacek, M., et al. (2013). A novel mutation within a transmembrane helix of the bile salt export pump (BSEP, ABCB11) with delayed development of cirrhosis. Liver Int. 33: 1527–1535. https://doi.org/10.1111/liv.12217. - PubMed
  143. Stindt, J., Kluge, S., Droge, C., Keitel, V., Stross, C., Baumann, U., Brinkert, F., Dhawan, A., Engelmann, G., Ganschow, R., et al. (2016). Bile salt export pump-reactive antibodies form a polyclonal, multi-inhibitory response in antibody-induced bile salt export pump deficiency. Hepatology 63: 524–537. https://doi.org/10.1002/hep.28311. - PubMed
  144. Strautnieks, S.S., Byrne, J.A., Pawlikowska, L., Cebecauerova, D., Rayner, A., Dutton, L., Meier, Y., Antoniou, A., Stieger, B., Arnell, H., et al. (2008). Severe bile salt export pump deficiency: 82 different ABCB11 mutations in 109 families. Gastroenterology 134: 1203–1214. https://doi.org/10.1053/j.gastro.2008.01.038. - PubMed
  145. Strautnieks, S.S., Kagalwalla, A.F., Tanner, M.S., Knisely, A.S., Bull, L., Freimer, N., Kocoshis, S.A., Gardiner, R.M., and Thompson, R.J. (1997). Identification of a locus for progressive familial intrahepatic cholestasis PFIC2 on chromosome 2q24. Am. J. Hum. Genet. 61: 630–633. https://doi.org/10.1086/515501. - PubMed
  146. Studer, E., Zhou, X., Zhao, R., Wang, Y., Takabe, K., Nagahashi, M., Pandak, W.M., Dent, P., Spiegel, S., Shi, R., et al. (2012). Conjugated bile acids activate the sphingosine-1-phosphate receptor 2 in primary rodent hepatocytes. Hepatology 55: 267–276. https://doi.org/10.1002/hep.24681. - PubMed
  147. Sugita, T., Amano, K., Nakano, M., Masubuchi, N., Sugihara, M., and Matsuura, T. (2015). Analysis of the serum bile Acid composition for differential diagnosis in patients with liver disease. Gastroenterol Res Pract 2015: 717431. https://doi.org/10.1155/2015/717431. - PubMed
  148. Takahashi, S., Fukami, T., Masuo, Y., Brocker, C.N., Xie, C., Krausz, K.W., Wolf, C.R., Henderson, C.J., and Gonzalez, F.J. (2016). Cyp2c70 is responsible for the species difference in bile acid metabolism between mice and humans. J. Lipid Res. 57: 2130–2137. https://doi.org/10.1194/jlr.m071183. - PubMed
  149. Takikawa, H., Beppu, T., and Seyama, Y. (1985). Profiles of bile acids and their glucuronide and sulphate conjugates in the serum, urine and bile from patients undergoing bile drainage. Gut 26: 38–42, https://doi.org/10.1136/gut.26.1.38. 3965365. - PubMed
  150. Thomas, C., Gioiello, A., Noriega, L., Strehle, A., Oury, J., Rizzo, G., Macchiarulo, A., Yamamoto, H., Mataki, C., Pruzanski, M., et al. (2009). TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metabol. 10: 167–177. https://doi.org/10.1016/j.cmet.2009.08.001. - PubMed
  151. Trauner, M. and Boyer, J.L. (2003). Bile salt transporters: molecular characterization, function, and regulation. Physiol. Rev. 83: 633–671. https://doi.org/10.1152/physrev.00027.2002. - PubMed
  152. van Helvoort, A., Smith, A.J., Sprong, H., Fritsche, I., Schinkel, A.H., Borst, P., and van Meer, G. (1996). MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell 87: 507–517. https://doi.org/10.1016/s0092-8674(00)81370-7. - PubMed
  153. Van Mil, S.W., Milona, A., Dixon, P.H., Mullenbach, R., Geenes, V.L., Chambers, J., Shevchuk, V., Moore, G.E., Lammert, F., Glantz, A.G., et al. (2007). Functional variants of the central bile acid sensor FXR identified in intrahepatic cholestasis of pregnancy. Gastroenterology 133: 507–516. https://doi.org/10.1053/j.gastro.2007.05.015. - PubMed
  154. van Mil, S.W., van der Woerd, W.L., van der Brugge, G., Sturm, E., Jansen, P.L., Bull, L.N., van den Berg, I.E., Berger, R., Houwen, R.H., and Klomp, L.W. (2004). Benign recurrent intrahepatic cholestasis type 2 is caused by mutations in ABCB11. Gastroenterology 127: 379–384. https://doi.org/10.1053/j.gastro.2004.04.065. - PubMed
  155. van Wessel, D.B.E., Thompson, R.J., Gonzales, E., Jankowska, I., Sokal, E., Grammatikopoulos, T., Kadaristiana, A., Jacquemin, E., Spraul, A., Lipinski, P., et al. (2020). Genotype correlates with the natural history of severe bile salt export pump deficiency. J. Hepatol. 73: 84–93. https://doi.org/10.1016/j.jhep.2020.02.007. - PubMed
  156. Vassileva, G., Golovko, A., Markowitz, L., Abbondanzo, S.J., Zeng, M., Yang, S., Hoos, L., Tetzloff, G., Levitan, D., Murgolo, N.J., et al. (2006). Targeted deletion of Gpbar1 protects mice from cholesterol gallstone formation. Biochem. J. 398: 423–430. https://doi.org/10.1042/bj20060537. - PubMed
  157. Velazquez-Villegas, L.A., Perino, A., Lemos, V., Zietak, M., Nomura, M., Pols, T.W.H., and Schoonjans, K. (2018). TGR5 signalling promotes mitochondrial fission and beige remodelling of white adipose tissue. Nat. Commun. 9: 245. https://doi.org/10.1038/s41467-017-02068-0. - PubMed
  158. Wadsworth, C.A., Dixon, P.H., Wong, J.H., Chapman, M.H., McKay, S.C., Sharif, A., Spalding, D.R., Pereira, S.P., Thomas, H.C., Taylor-Robinson, S.D., et al. (2011). Genetic factors in the pathogenesis of cholangiocarcinoma. Dig. Dis. 29: 93–97. https://doi.org/10.1159/000324688. - PubMed
  159. Wang, L., Hou, W.T., Chen, L., Jiang, Y.L., Xu, D., Sun, L., Zhou, C.Z., and Chen, Y. (2020). Cryo-EM structure of human bile salts exporter ABCB11. Cell Res. 30: 623–625, doi:https://doi.org/10.2210/pdb6lr0/pdb. - PubMed
  160. Wäschenbach, L., Gertzen, C.G., Keitel, V., and Gohlke, H. (2020). Dimerization energetics of the G‐protein coupled bile acid receptor TGR5 from all‐atom simulations. J. Comput. Chem. 41: 874–884. https://doi.org/10.1002/jcc.26135. - PubMed
  161. Webster, C.R., Blanch, C.J., Phillips, J., and Anwer, M.S. (2000). Cell swelling-induced translocation of rat liver Na+/taurocholate cotransport polypeptide is mediated via the phosphoinositide 3-kinase signaling pathway. J. Biol. Chem. 275: 29754–29760. https://doi.org/10.1074/jbc.m002831200. - PubMed
  162. Webster, C.R., Srinivasulu, U., Ananthanarayanan, M., Suchy, F.J., and Anwer, M.S. (2002). Protein kinase B/Akt mediates cAMP- and cell swelling-stimulated Na+/taurocholate cotransport and Ntcp translocation. J. Biol. Chem. 277: 28578–28583. https://doi.org/10.1074/jbc.m201937200. - PubMed
  163. Williamson, C. and Geenes, V. (2014). Intrahepatic cholestasis of pregnancy. Obstet. Gynecol. 124: 120–133. https://doi.org/10.1097/aog.0000000000000346. - PubMed
  164. Yan, H., Peng, B., He, W., Zhong, G., Qi, Y., Ren, B., Gao, Z., Jing, Z., Song, M., Xu, G., et al. (2013). Molecular determinants of hepatitis B and D virus entry restriction in mouse sodium taurocholate cotransporting polypeptide. J. Virol. 87: 7977–7991. https://doi.org/10.1128/jvi.03540-12. - PubMed
  165. Yang, F., Mao, C., Guo, L., Lin, J., Ming, Q., Xiao, P., Wu, X., Shen, Q., Guo, S., Shen, D.-D., et al. (2020). Structural basis of GPBAR activation and bile acid recognition. Nature 587: 499–504. https://doi.org/10.1038/s41586-020-2569-1. - PubMed
  166. Yuan, M., Breitkopf, S.B., Yang, X., and Asara, J.M. (2012). A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat. Protoc. 7: 872–881. https://doi.org/10.1038/nprot.2012.024. - PubMed
  167. Zhang, G.H., Cong, A.R., Xu, G.B., Li, C.B., Yang, R.F., and Xia, T.A. (2005). An enzymatic cycling method for the determination of serum total bile acids with recombinant 3α-hydroxysteroid dehydrogenase. Biochem. Biophys. Res. Commun. 326: 87–92. https://doi.org/10.1016/j.bbrc.2004.11.005. - PubMed

Publication Types