Display options
Share it on

Curr Biol. 2021 Aug 09;31(15):3391-3400.e4. doi: 10.1016/j.cub.2021.05.024. Epub 2021 Jun 09.

Extensive cone-dependent spectral opponency within a discrete zone of the lateral geniculate nucleus supporting mouse color vision.

Current biology : CB

Josh W Mouland, Abigail Pienaar, Christopher Williams, Alex J Watson, Robert J Lucas, Timothy M Brown

Affiliations

  1. Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
  2. Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK. Electronic address: [email protected].

PMID: 34111401 PMCID: PMC8360768 DOI: 10.1016/j.cub.2021.05.024

Abstract

Color vision, originating with opponent processing of spectrally distinct photoreceptor signals, plays important roles in animal behavior.

Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.

Keywords: chromatic; electrophysiology; intergeniculate; light; melanopsin; photoreceptor; retina; rhodopsin; thalamus

Conflict of interest statement

Declaration of interests The authors declare no competing interests.

References

  1. Nature. 2016 Apr 14;532(7598):236-9 - PubMed
  2. Neuron. 2010 Jul 15;67(1):49-60 - PubMed
  3. Neuron. 2018 Jan 3;97(1):150-163.e4 - PubMed
  4. Vis Neurosci. 2005 Nov-Dec;22(6):893-903 - PubMed
  5. J Neurosci. 2005 Jun 1;25(22):5438-45 - PubMed
  6. BMC Neurosci. 2008 Nov 14;9:113 - PubMed
  7. Neuron. 2012 Nov 21;76(4):713-20 - PubMed
  8. Neuron. 2000 Sep;27(3):513-23 - PubMed
  9. Neuron. 2013 Feb 6;77(3):559-71 - PubMed
  10. Neuron. 2019 Oct 23;104(2):205-226 - PubMed
  11. Am Nat. 2017 Aug;190(2):157-170 - PubMed
  12. J Physiol. 2018 Nov;596(22):5461-5481 - PubMed
  13. Doc Ophthalmol. 2007 Nov;115(3):137-44 - PubMed
  14. Neuron. 2014 May 21;82(4):781-8 - PubMed
  15. J Neurosci. 2011 Apr 27;31(17):6504-17 - PubMed
  16. Neuron. 2019 Apr 17;102(2):462-476.e8 - PubMed
  17. Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11706-11 - PubMed
  18. J Neurosci. 2013 Mar 13;33(11):4642-56 - PubMed
  19. PLoS Biol. 2015 Apr 17;13(4):e1002127 - PubMed
  20. PLoS One. 2013;8(1):e53583 - PubMed
  21. Photochem Photobiol. 2006 Nov-Dec;82(6):1489-94 - PubMed
  22. J Neurosci. 2012 Sep 26;32(39):13608-20 - PubMed
  23. J Neurosci. 2011 Jun 15;31(24):8760-9 - PubMed
  24. Annu Rev Vis Sci. 2019 Sep 15;5:177-200 - PubMed
  25. Neurosci Biobehav Rev. 2017 Jul;78:24-33 - PubMed
  26. Spat Vis. 1997;10(4):437-42 - PubMed
  27. Physiol Rev. 2019 Jul 1;99(3):1527-1573 - PubMed
  28. Vis Neurosci. 2000 Jul-Aug;17(4):509-28 - PubMed
  29. Elife. 2020 May 28;9: - PubMed
  30. Curr Biol. 2017 Jun 5;27(11):1623-1632.e4 - PubMed
  31. Curr Biol. 2012 Jun 19;22(12):1134-41 - PubMed
  32. Curr Biol. 2014 Jun 2;24(11):1241-7 - PubMed
  33. Neuron. 2017 Mar 22;93(6):1519 - PubMed
  34. PLoS Biol. 2010 Dec 07;8(12):e1000558 - PubMed
  35. Neuron. 2013 Dec 4;80(5):1206-17 - PubMed
  36. Curr Biol. 2014 Nov 3;24(21):2481-90 - PubMed
  37. J Neurosci. 2017 Feb 1;37(5):1102-1116 - PubMed
  38. Spat Vis. 1997;10(4):433-6 - PubMed
  39. Vision Res. 2004 Dec;44(28):3277-88 - PubMed
  40. PLoS Comput Biol. 2013;9(2):e1002921 - PubMed
  41. Nat Commun. 2017 Nov 27;8(1):1813 - PubMed
  42. Nat Commun. 2020 Jul 13;11(1):3481 - PubMed
  43. Vision Res. 2011 Jan 28;51(2):280-7 - PubMed
  44. Cell. 2018 May 31;173(6):1343-1355.e24 - PubMed
  45. Elife. 2018 Jan 10;7: - PubMed
  46. BMC Biol. 2018 Jul 31;16(1):83 - PubMed

Publication Types

Grant support