Display options
Share it on

Mol Neurobiol. 2021 Oct;58(10):4816-4827. doi: 10.1007/s12035-021-02465-z. Epub 2021 Jun 28.

Transcriptomic Analysis of Peripheral Monocytes upon Fingolimod Treatment in Relapsing Remitting Multiple Sclerosis Patients.

Molecular neurobiology

G Sferruzza, F Clarelli, E Mascia, L Ferrè, L Ottoboni, M Sorosina, S Santoro, L Moiola, V Martinelli, G Comi, F Martinelli Boneschi, M Filippi, P Provero, Federica Esposito

Affiliations

  1. Department of Neurology, IRCCS San Raffaele Scientific Institute, Via Olgettina, 48, 20132, Milan, Italy.
  2. Neuroimmunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
  3. Laboratory of Human Genetics of Neurological Disorders, CNS Inflammatory Unit & INSPE, IRCCS San Raffaele Scientific Institute, Milan, Italy.
  4. Department of Neurology and Multiple Sclerosis Research Unit, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy.
  5. Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.
  6. Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.
  7. Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy.
  8. Department of Neurosciences "Rita Levi Montalcini", University of Turin, Turin, Italy.
  9. Department of Neurology, IRCCS San Raffaele Scientific Institute, Via Olgettina, 48, 20132, Milan, Italy. [email protected].
  10. Laboratory of Human Genetics of Neurological Disorders, CNS Inflammatory Unit & INSPE, IRCCS San Raffaele Scientific Institute, Milan, Italy. [email protected].

PMID: 34181235 DOI: 10.1007/s12035-021-02465-z

Abstract

Fingolimod (FTY), a second-line oral drug approved for relapsing remitting Multiple Sclerosis (RRMS) acts in preventing lymphocyte migration outside lymph nodes; moreover, several lines of evidence suggest that it also inhibits myeloid cell activation. In this study, we investigated the transcriptional changes induced by FTY in monocytes in order to better elucidate its mechanism of action. CD14

© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Keywords: Fingolimod; Multiple sclerosis; Monocytes; Transcriptomic profile

References

  1. Filippi M, Bar-Or A, Piehl F et al (2018) Multiple sclerosis. Nat Rev Dis Prim 4:43. https://doi.org/10.1038/s41572-018-0041-4 - PubMed
  2. Compston A, Coles A (2008) Multiple sclerosis. Lancet 372:1502–1517. https://doi.org/10.1016/S0140-6736(08)61620-7 - PubMed
  3. Mishra MK, Yong VW (2016) Myeloid cells — targets of medication in multiple sclerosis. Nat Rev Neurol 12:539–551. https://doi.org/10.1038/nrneurol.2016.110 - PubMed
  4. Patel AA, Zhang Y, Fullerton JN et al (2017) The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J Exp Med 214:1913–1923. https://doi.org/10.1084/jem.20170355 - PubMed
  5. Jakubzick CV, Randolph GJ, Henson PM (2017) Monocyte differentiation and antigen-presenting functions. Nat Rev Immunol 17:349–362. https://doi.org/10.1038/nri.2017.28 - PubMed
  6. Stoeckle C, Tolosa E (2010) Antigen processing and presentation in multiple sclerosis. Results Probl Cell Differ 51:149–172. https://doi.org/10.1007/400_2009_22 - PubMed
  7. Ajami B, Bennett JL, Krieger C et al (2011) Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci 14:1142–1149. https://doi.org/10.1038/nn.2887 - PubMed
  8. Mildner A, Mack M, Schmidt H et al (2009) CCR2+Ly-6Chi monocytes are crucial for the effector phase of autoimmunity in the central nervous system. Brain 132:2487–2500. https://doi.org/10.1093/brain/awp144 - PubMed
  9. Chun J, Hartung H-P (2010) Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin Neuropharmacol 33:91–101. https://doi.org/10.1097/WNF.0b013e3181cbf825 - PubMed
  10. Pitteri M, Magliozzi R, Bajrami A et al (2018) Potential neuroprotective effect of Fingolimod in multiple sclerosis and its association with clinical variables. Expert Opin Pharmacother 19:387–395. https://doi.org/10.1080/14656566.2018.1434143 - PubMed
  11. O’Sullivan SA, O’Sullivan C, Healy LM et al (2018) Sphingosine 1-phosphate receptors regulate TLR4-induced CXCL5 release from astrocytes and microglia. J Neurochem 144:736–747. https://doi.org/10.1111/jnc.14313 - PubMed
  12. Golan M, Mausner-Fainberg K, Ibrahim B et al (2019) Fingolimod increases brain-derived neurotrophic factor level secretion from circulating T cells of patients with multiple sclerosis. CNS Drugs 33:1229–1237. https://doi.org/10.1007/s40263-019-00675-7 - PubMed
  13. Luessi F, Kraus S, Trinschek B et al (2015) FTY720 (fingolimod) treatment tips the balance towards less immunogenic antigen-presenting cells in patients with multiple sclerosis. Mult Scler 21:1811–1822. https://doi.org/10.1177/1352458515574895 - PubMed
  14. Di Dario M, Colombo E, Govi C et al (2015) Myeloid cells as target of fingolimod action in multiple sclerosis. Neurol Neuroimmunol neuroinflammation 2:e157. https://doi.org/10.1212/NXI.0000000000000157 - PubMed
  15. Hughes JE, Srinivasan S, Lynch KR et al (2008) Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages. Circ Res 102:950–958. https://doi.org/10.1161/CIRCRESAHA.107.170779 - PubMed
  16. Michaud J, Im D-S, Hla T (2010) Inhibitory role of sphingosine 1-phosphate receptor 2 in macrophage recruitment during inflammation. J Immunol 184:1475–1483. https://doi.org/10.4049/jimmunol.0901586 - PubMed
  17. Polman CH, Reingold SC, Banwell B et al (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69:292–302. https://doi.org/10.1002/ana.22366 - PubMed
  18. Jokubaitis VG, Li V, Kalincik T et al (2014) Fingolimod after natalizumab and the risk of short-term relapse. Neurology 82:1204–1211. https://doi.org/10.1212/WNL.0000000000000283 - PubMed
  19. Ottoboni L, Keenan BT, Tamayo P et al (2012) An RNA profile identifies two subsets of multiple sclerosis patients differing in disease activity. Sci Transl Med 4:153ra131. https://doi.org/10.1126/scitranslmed.3004186 - PubMed
  20. Bevan CJ, Cree BAC (2014) Disease activity free status: a new end point for a new era in multiple sclerosis clinical research? JAMA Neurol 71:269–270. https://doi.org/10.1001/jamaneurol.2013.5486 - PubMed
  21. Kappos L, Radue E-W, Chin P et al (2016) Onset of clinical and MRI efficacy occurs early after fingolimod treatment initiation in relapsing multiple sclerosis. J Neurol 263:354–360. https://doi.org/10.1007/s00415-015-7978-y - PubMed
  22. Bray NL, Pimentel H, Melsted P, Pachter L (2016) Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 34:525–527. https://doi.org/10.1038/nbt.3519 - PubMed
  23. Soneson C, Love MI, Robinson MD (2015) Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res 4:1521. https://doi.org/10.12688/f1000research.7563.2 - PubMed
  24. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8 - PubMed
  25. Hochberg Y, Benjamini Y (1990) More powerful procedures for multiple significance testing. Stat Med 9:811–818. https://doi.org/10.1002/sim.4780090710 - PubMed
  26. Esposito F, Ferrè L, Clarelli F et al (2018) Effectiveness and baseline factors associated to fingolimod response in a real-world study on multiple sclerosis patients. J Neurol 265:896–905. https://doi.org/10.1007/s00415-018-8791-1 - PubMed
  27. Wang J, Vasaikar S, Shi Z et al (2017) WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res. https://doi.org/10.1093/nar/gkx356 - PubMed
  28. Mitrea C, Taghavi Z, Bokanizad B et al (2013) Methods and approaches in the topology-based analysis of biological pathways. Front Physiol 4:278. https://doi.org/10.3389/fphys.2013.00278 - PubMed
  29. Koumakis L, Kanterakis A, Kartsaki E et al (2016) MinePath: mining for phenotype differential sub-paths in molecular pathways. PLoS Comput Biol 12:e1005187. https://doi.org/10.1371/journal.pcbi.1005187 - PubMed
  30. Beisser D, Klau GW, Dandekar T et al (2010) BioNet: an R-Package for the functional analysis of biological networks. Bioinformatics 26:1129–1130. https://doi.org/10.1093/bioinformatics/btq089 - PubMed
  31. Scardoni G, Tosadori G, Faizan M et al (2014) Biological network analysis with CentiScaPe: centralities and experimental dataset integration. F1000Res 3:139. https://doi.org/10.12688/f1000research.4477.2 - PubMed
  32. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. https://doi.org/10.1101/gr.1239303 - PubMed
  33. Newman AM, Steen CB, Liu CL et al (2019) Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol 37:773–782. https://doi.org/10.1038/s41587-019-0114-2 - PubMed
  34. Angerer IC, Hecker M, Koczan D et al (2018) Transcriptome profiling of peripheral blood immune cell populations in multiple sclerosis patients before and during treatment with a sphingosine-1-phosphate receptor modulator. CNS Neurosci Ther 24:193–201. https://doi.org/10.1111/cns.12793 - PubMed
  35. Friess J, Hecker M, Roch L et al (2017) Fingolimod alters the transcriptome profile of circulating CD4+ cells in multiple sclerosis. Sci Rep 7:42087. https://doi.org/10.1038/srep42087 - PubMed
  36. Roch L, Hecker M, Friess J et al (2017) High-resolution expression profiling of peripheral blood CD8+ cells in patients with multiple sclerosis displays fingolimod-induced immune cell redistribution. Mol Neurobiol 54:5511–5525. https://doi.org/10.1007/s12035-016-0075-0 - PubMed
  37. Moreno-Torres I, González-García C, Marconi M et al (2018) Immunophenotype and transcriptome profile of patients with multiple sclerosis treated with fingolimod: setting up a model for prediction of response in a 2-year translational study. Front Immunol 9:1693. https://doi.org/10.3389/fimmu.2018.01693 - PubMed
  38. Ingersoll MA, Spanbroek R, Lottaz C et al (2010) Comparison of gene expression profiles between human and mouse monocyte subsets. Blood 115:e10–e19. https://doi.org/10.1182/blood-2009-07-235028 - PubMed
  39. Randolph GJ, Beaulieu S, Lebecque S et al (1998) Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science 282:480–483. https://doi.org/10.1126/science.282.5388.480 - PubMed
  40. Jakubzick C, Gautier EL, Gibbings SL et al (2013) Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes. Immunity 39:599–610. https://doi.org/10.1016/j.immuni.2013.08.007 - PubMed
  41. Kim TS, Braciale TJ (2009) Respiratory dendritic cell subsets differ in their capacity to support the induction of virus-specific cytotoxic CD8+ T cell responses. PLoS ONE 4:e4204. https://doi.org/10.1371/journal.pone.0004204 - PubMed
  42. Zigmond E, Varol C, Farache J et al (2012) Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells. Immunity 37:1076–1090. https://doi.org/10.1016/j.immuni.2012.08.026 - PubMed
  43. Hohl TM, Rivera A, Lipuma L et al (2009) Inflammatory monocytes facilitate adaptive CD4 T cell responses during respiratory fungal infection. Cell Host Microbe 6:470–481. https://doi.org/10.1016/j.chom.2009.10.007 - PubMed
  44. Sponaas A-M, Freitas do Rosario AP, Voisine C, et al (2009) Migrating monocytes recruited to the spleen play an important role in control of blood stage malaria. Blood 114:5522–5531. https://doi.org/10.1182/blood-2009-04-217489 - PubMed
  45. Nagai T, Devergne O, Mueller TF et al (2003) Timing of IFN-beta exposure during human dendritic cell maturation and naive Th cell stimulation has contrasting effects on Th1 subset generation: a role for IFN-beta-mediated regulation of IL-12 family cytokines and IL-18 in naive Th cell differentiation. J Immunol 171:5233–5243. https://doi.org/10.4049/jimmunol.171.10.5233 - PubMed
  46. Thomas K, Sehr T, Proschmann U et al (2017) Fingolimod additionally acts as immunomodulator focused on the innate immune system beyond its prominent effects on lymphocyte recirculation. J Neuroinflammation 14:41. https://doi.org/10.1186/s12974-017-0817-6 - PubMed
  47. Müller H, Hofer S, Kaneider N et al (2005) The immunomodulator FTY720 interferes with effector functions of human monocyte-derived dendritic cells. Eur J Immunol 35:533–545. https://doi.org/10.1002/eji.200425556 - PubMed
  48. Lan YY, Tokita D, Wang Z et al (2008) Sphingosine 1-phosphate receptor agonism impairs skin dendritic cell migration and homing to secondary lymphoid tissue: association with prolonged allograft survival. Transpl Immunol 20:88–94. https://doi.org/10.1016/j.trim.2008.07.004 - PubMed
  49. Zuvich RL, McCauley JL, Oksenberg JR et al (2010) Genetic variation in the IL7RA/IL7 pathway increases multiple sclerosis susceptibility. Hum Genet 127:525–535. https://doi.org/10.1007/s00439-010-0789-4 - PubMed
  50. Todd JA, Walker NM, Cooper JD et al (2007) Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet 39:857–864. https://doi.org/10.1038/ng2068 - PubMed
  51. O’Doherty C, Alloza I, Rooney M, Vandenbroeck K (2009) IL7RA polymorphisms and chronic inflammatory arthropathies. Tissue Antigens 74:429–431. https://doi.org/10.1111/j.1399-0039.2009.01342.x - PubMed
  52. Heron M, Grutters JC, van Moorsel CHM et al (2009) Variation in IL7R predisposes to sarcoid inflammation. Genes Immun 10:647–653. https://doi.org/10.1038/gene.2009.55 - PubMed
  53. Hoffjan S, Beygo J, Akkad DA et al (2009) Analysis of variation in the IL7RA and IL2RA genes in atopic dermatitis. J Dermatol Sci 55:138–140. https://doi.org/10.1016/j.jdermsci.2009.05.001 - PubMed
  54. Mells GF, Floyd JAB, Morley KI et al (2011) Genome-wide association study identifies 12 new susceptibility loci for primary biliary cirrhosis. Nat Genet 43:329–332. https://doi.org/10.1038/ng.789 - PubMed
  55. Liu X, Leung S, Wang C et al (2010) Crucial role of interleukin-7 in T helper type 17 survival and expansion in autoimmune disease. Nat Med 16:191–197. https://doi.org/10.1038/nm.2077 - PubMed
  56. Fry TJ, Mackall CL (2002) Interleukin-7: from bench to clinic. Blood 99:3892–3904. https://doi.org/10.1182/blood.v99.11.3892 - PubMed
  57. Standiford TJ, Strieter RM, Allen RM et al (1992) IL-7 up-regulates the expression of IL-8 from resting and stimulated human blood monocytes. J Immunol 149:2035–2039 - PubMed
  58. Alderson MR, Tough TW, Ziegler SF, Grabstein KH (1991) Interleukin 7 induces cytokine secretion and tumoricidal activity by human peripheral blood monocytes. J Exp Med 173:923–930. https://doi.org/10.1084/jem.173.4.923 - PubMed
  59. Chen Z, Kim S, Chamberlain ND et al (2013) The novel role of IL-7 ligation to IL-7 receptor in myeloid cells of rheumatoid arthritis and collagen-induced arthritis. J Immunol 190:5256–5266. https://doi.org/10.4049/jimmunol.1201675 - PubMed
  60. Lorenowicz MJ, van Gils J, de Boer M et al (2006) Epac1-Rap1 signaling regulates monocyte adhesion and chemotaxis. J Leukoc Biol 80:1542–1552. https://doi.org/10.1189/jlb.0506357 - PubMed
  61. Uhlen M, Karlsson MJ, Zhong W et al (2019) A genome-wide transcriptomic analysis of protein-coding genes in human blood cells. Science 366(6472):eaax9198. https://doi.org/10.1126/science.aax9198 - PubMed
  62. Disanto G, Kjetil Sandve G, Ricigliano VAG et al (2014) DNase hypersensitive sites and association with multiple sclerosis. Hum Mol Genet 23:942–948. https://doi.org/10.1093/hmg/ddt489 - PubMed
  63. Mazzola MA, Raheja R, Murugaiyan G et al (2015) Identification of a novel mechanism of action of fingolimod (FTY720) on human effector T cell function through TCF-1 upregulation. J Neuroinflammation 12:245. https://doi.org/10.1186/s12974-015-0460-z - PubMed
  64. Al-Mossawi H, Yager N, Taylor CA et al (2019) Context-specific regulation of surface and soluble IL7R expression by an autoimmune risk allele. Nat Commun 10:4575. https://doi.org/10.1038/s41467-019-12393-1 - PubMed
  65. Eastman Q, Grosschedl R (1999) Regulation of LEF-1/TCF transcription factors by Wnt and other signals. Curr Opin Cell Biol 11:233–240. https://doi.org/10.1016/s0955-0674(99)80031-3 - PubMed
  66. Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434:843–850. https://doi.org/10.1038/nature03319 - PubMed
  67. Reya T, O’Riordan M, Okamura R et al (2000) Wnt signaling regulates B lymphocyte proliferation through a LEF-1 dependent mechanism. Immunity 13:15–24. https://doi.org/10.1016/s1074-7613(00)00004-2 - PubMed
  68. Yu S, Zhou X, Steinke FC et al (2012) The TCF-1 and LEF-1 transcription factors have cooperative and opposing roles in T cell development and malignancy. Immunity 37:813–826. https://doi.org/10.1016/j.immuni.2012.08.009 - PubMed
  69. Xue H-H, Zhao D-M (2012) Regulation of mature T cell responses by the Wnt signaling pathway. Ann N Y Acad Sci 1247:16–33. https://doi.org/10.1111/j.1749-6632.2011.06302.x - PubMed
  70. Staal FJT, Sen JM (2008) The canonical Wnt signaling pathway plays an important role in lymphopoiesis and hematopoiesis. Eur J Immunol 38:1788–1794. https://doi.org/10.1002/eji.200738118 - PubMed
  71. Tickenbrock L, Schwäble J, Strey A et al (2006) Wnt signaling regulates transendothelial migration of monocytes. J Leukoc Biol 79:1306–1313. https://doi.org/10.1189/jlb.0905539 - PubMed
  72. van de Laar L, van den Bosch A, van der Kooij SW et al (2010) A nonredundant role for canonical NF-κB in human myeloid dendritic cell development and function. J Immunol 185:7252–7261. https://doi.org/10.4049/jimmunol.1000672 - PubMed
  73. Frankenberger M, Pforte A, Sternsdorf T et al (1994) Constitutive nuclear NF-kappa B in cells of the monocyte lineage. Biochem J 304(Pt 1):87–94. https://doi.org/10.1042/bj3040087 - PubMed
  74. Takashiba S, Van Dyke TE, Amar S et al (1999) Differentiation of monocytes to macrophages primes cells for lipopolysaccharide stimulation via accumulation of cytoplasmic nuclear factor kappaB. Infect Immun 67:5573–5578. https://doi.org/10.1128/IAI.67.11.5573-5578.1999 - PubMed
  75. Harhaj EW, Dixit VM (2012) Regulation of NF-κB by deubiquitinases. Immunol Rev 246:107–124. https://doi.org/10.1111/j.1600-065X.2012.01100.x - PubMed
  76. Ellrichmann G, Thöne J, Lee D-H et al (2012) Constitutive activity of NF-kappa B in myeloid cells drives pathogenicity of monocytes and macrophages during autoimmune neuroinflammation. J Neuroinflammation 9:15. https://doi.org/10.1186/1742-2094-9-15 - PubMed
  77. Steimle A, Kalbacher H, Maurer A et al (2016) A novel approach for reliable detection of cathepsin S activities in mouse antigen presenting cells. J Immunol Methods 432:87–94. https://doi.org/10.1016/j.jim.2016.02.015 - PubMed
  78. Haves-Zburof D, Paperna T, Gour-Lavie A et al (2011) Cathepsins and their endogenous inhibitors cystatins: expression and modulation in multiple sclerosis. J Cell Mol Med 15:2421–2429. https://doi.org/10.1111/j.1582-4934.2010.01229.x - PubMed
  79. Grossman I, Avidan N, Singer C et al (2007) Pharmacogenetics of glatiramer acetate therapy for multiple sclerosis reveals drug-response markers. Pharmacogenet Genomics 17:657–666. https://doi.org/10.1097/FPC.0b013e3281299169 - PubMed
  80. Cunningham S, Graham C, Hutchinson M et al (2005) Pharmacogenomics of responsiveness to interferon IFN-beta treatment in multiple sclerosis: a genetic screen of 100 type I interferon-inducible genes. Clin Pharmacol Ther 78:635–646. https://doi.org/10.1016/j.clpt.2005.08.018 - PubMed
  81. Karagkouni A, Alevizos M, Theoharides TC (2013) Effect of stress on brain inflammation and multiple sclerosis. Autoimmun Rev 12:947–953. https://doi.org/10.1016/j.autrev.2013.02.006 - PubMed
  82. van Langelaar J, Rijvers L, Smolders J, van Luijn MM (2020) B and T cells driving multiple sclerosis: identity, mechanisms and potential triggers. Front Immunol 11:760. https://doi.org/10.3389/fimmu.2020.00760 - PubMed
  83. Kurashima Y, Kunisawa J, Higuchi M et al (2007) Sphingosine 1-phosphate-mediated trafficking of pathogenic Th2 and mast cells for the control of food allergy. J Immunol 179:1577–1585. https://doi.org/10.4049/jimmunol.179.3.1577 - PubMed
  84. Kleinjan A, van Nimwegen M, Leman K et al (2013) Topical treatment targeting sphingosine-1-phosphate and sphingosine lyase abrogates experimental allergic rhinitis in a murine model. Allergy 68:204–212. https://doi.org/10.1111/all.12082 - PubMed

Publication Types

Grant support