Display options
Share it on

J Gerontol A Biol Sci Med Sci. 2021 Sep 13;76(10):e307-e313. doi: 10.1093/gerona/glab177.

Identification of a Novel Locus for Gait Speed Decline With Aging: The Long Life Family Study.

The journals of gerontology. Series A, Biological sciences and medical sciences

Adam J Santanasto, Mary K Wojczynski, Ryan K Cvejkus, Shiow Lin, Lihua Wang, Bharat Thyagarajan, Kaare Christensen, Nicole Schupf, Mary F Feitosa, Ping An, Joseph M Zmuda

Affiliations

  1. Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania, USA.
  2. Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, USA.
  3. Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, USA.
  4. The Danish Aging Research Center, Epidemiology Unit, Institute of Public Health, University of Southern Denmark, Odense, Denmark.
  5. Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, USA.

PMID: 34156441 PMCID: PMC8436996 DOI: 10.1093/gerona/glab177

Abstract

BACKGROUND: Gait speed is a powerful indicator of health with aging. Potential genetic contributions to gait speed and its decline with aging are not well defined. We determined the heritability of and potential genetic regions underlying change in gait speed using longitudinal data from 2379 individuals belonging to 509 families in the Long Life Family Study (mean age 64 ± 12, range 30-110 years; 45% men).

METHODS: Gait speed was measured over 4 m at baseline and follow-up (7 ± 1 years). Quantitative trait linkage analyses were completed using pedigree-based maximum likelihood methods with logarithm of the odds (LOD) scores greater than 3.0, indicating genome-wide significance. We also performed linkage analysis in the top 10% of families contributing to LOD scores to allow for heterogeneity among families (HLOD). Data were adjusted for age, sex, height, and field center.

RESULTS: At baseline, 26.9% of individuals had "slow" gait speed less than 1.0 m/s (mean: 1.1 ± 0.2 m/s) and gait speed declined at a rate of -0.02 ± 0.03 m/s per year (p < .0001). Baseline and change in gait speed were significantly heritable (h2 = 0.24-0.32, p < .05). We did not find significant evidence for linkage for baseline gait speed; however, we identified a significant locus for change in gait speed on chromosome 16p (LOD = 4.2). A subset of 21 families contributed to this linkage peak (HLOD = 6.83). Association analyses on chromosome 16 showed that the strongest variant resides within the ADCY9 gene.

CONCLUSION: Further analysis of the chromosome 16 region, and ADCY9 gene, may yield new insight on the biology of mobility decline with aging.

© The Author(s) 2021. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: [email protected].

Keywords: Epidemiology; Gait; Genetics; Physical function

References

  1. PLoS Genet. 2017 Apr 27;13(4):e1006528 - PubMed
  2. Nature. 2015 Feb 12;518(7538):187-196 - PubMed
  3. Nat Commun. 2015 Dec 04;6:8658 - PubMed
  4. Am J Hum Genet. 1998 May;62(5):1198-211 - PubMed
  5. Eur Child Adolesc Psychiatry. 1999;8 Suppl 3:43-6 - PubMed
  6. Am J Med Genet B Neuropsychiatr Genet. 2019 Sep;180(6):428-438 - PubMed
  7. Am J Hum Genet. 1997 Sep;61(3):748-60 - PubMed
  8. Nucleic Acids Res. 2019 Jan 8;47(D1):D1005-D1012 - PubMed
  9. Arch Intern Med. 2011 May 23;171(10):880-6 - PubMed
  10. Arch Intern Med. 2001 Nov 26;161(21):2602-7 - PubMed
  11. J Appl Physiol (1985). 2010 May;108(5):1142-7 - PubMed
  12. J Appl Physiol (1985). 2007 Oct;103(4):1121-7 - PubMed
  13. Metabolism. 2015 Oct;64(10):1359-71 - PubMed
  14. BMC Genet. 2003 Dec 31;4 Suppl 1:S5 - PubMed
  15. Nat Genet. 2016 Oct;48(10):1284-1287 - PubMed
  16. Aging Cell. 2016 Oct;15(5):792-800 - PubMed
  17. Nat Genet. 2010 Nov;42(11):937-48 - PubMed
  18. Genet Epidemiol. 1997;14(6):959-64 - PubMed
  19. PLoS Genet. 2015 Oct 01;11(10):e1005378 - PubMed
  20. J Am Geriatr Soc. 2005 Oct;53(10):1675-80 - PubMed
  21. Am J Hum Genet. 2019 Jan 3;104(1):65-75 - PubMed
  22. Front Public Health. 2013 Sep 30;1:38 - PubMed
  23. Atherosclerosis. 2020 Mar;297:102-110 - PubMed
  24. PLoS One. 2018 Nov 9;13(11):e0206873 - PubMed
  25. Physiol Genomics. 2014 Mar 1;46(5):149-58 - PubMed
  26. J Am Geriatr Soc. 2017 Sep;65(9):2016-2022 - PubMed
  27. Bioinformatics. 2001 Aug;17(8):742-3 - PubMed
  28. Nat Genet. 2013 May;45(5):501-12 - PubMed
  29. Nat Commun. 2017 Jul 12;8:16015 - PubMed
  30. J Gerontol A Biol Sci Med Sci. 2008 Nov;63(11):1227-34 - PubMed
  31. Am J Epidemiol. 2009 Dec 15;170(12):1555-62 - PubMed
  32. JAMA. 2011 Jan 5;305(1):50-8 - PubMed
  33. Bioinformatics. 2019 Dec 15;35(24):5346-5348 - PubMed
  34. Aging (Albany NY). 2017 Jan 10;9(1):209-246 - PubMed
  35. Aging (Albany NY). 2011 Jan;3(1):63-76 - PubMed
  36. Nat Genet. 2017 Jan;49(1):54-64 - PubMed
  37. J Am Geriatr Soc. 2016 Nov;64(11):e189-e194 - PubMed
  38. Cell Syst. 2020 Sep 23;11(3):229-238.e5 - PubMed
  39. J Gerontol A Biol Sci Med Sci. 2013 Nov;68(11):1395-401 - PubMed
  40. J Lipid Res. 2010 Nov;51(11):3316-23 - PubMed
  41. Sci Rep. 2018 Apr 24;8(1):6451 - PubMed
  42. Hum Mol Genet. 2019 Jan 1;28(1):166-174 - PubMed
  43. J Physiol Sci. 2013 Jan;63(1):79-85 - PubMed
  44. Nat Genet. 2019 Feb;51(2):258-266 - PubMed
  45. JAMA. 2014 Jun 18;311(23):2387-96 - PubMed

Publication Types

Grant support