Display options
Share it on

Proc Inst Mech Eng H. 2021 Nov;235(11):1335-1355. doi: 10.1177/09544119211028380. Epub 2021 Jul 10.

Mathematical simulation and prediction of tumor volume using RBF artificial neural network at different circumstances in the tumor microenvironment.

Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine

Mehran Akbarpour Ghazani, Mohsen Saghafian, Peyman Jalali, Madjid Soltani

Affiliations

  1. Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran.
  2. Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
  3. Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran.
  4. Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada.
  5. Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada.
  6. Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran.

PMID: 34247529 PMCID: PMC8573697 DOI: 10.1177/09544119211028380

Abstract

Uncontrolled proliferation of cells in a tissue caused by genetic mutations inside a cell is referred to as a tumor. A tumor which grows rapidly encounters a barrier when it grows to a certain size in presence of preexisting vasculature. This is the time when it has to find a way to go on the growth. The tumor starts to secrete tumor angiogenic factors (TAFs) and stimulate preexisting vessels to grow new sprouts. These new sprouts will find their way to the tumor in the extracellular matrix (ECM) by the gradient of TAF. As these new capillaries anastomose and reach tumor, fresh oxygen is available for the tumor and it will reinitiate the growth. Number of initial sprouts, distance of initial tumor cells from the vessel(s) and initial density of the tumor at the time of sprout formation are questions which are to be investigated. In the present study, the aim is to find the response of tumor cells and vessels to the reciprocal effects of each other in different circumstances in the tissue. Together with a mathematical formulation, a radial basis function (RBF) neural network is established to predict the number of tumor cells at different circumstances including size and distance of initial tumors from the parent vessel. A final formulation is given for the final number of tumor cells as a function of initial tumor size and distance between a parent vessel and a tumor. Results of this simulation demonstrate that, increasing the distance between a tumor and a parent vessel decreases the number of final tumor cells. Specially, this decrement becomes faster beyond a certain distance. Moreover, initial tumors in bigger domains must become much bigger before inducing angiogenesis which makes it harder for them to survive.

Keywords: Mathematical oncology; angiogenesis; artificial neural network; hybrid tumor modeling; radial basis function; vascular tumor

References

  1. Microvasc Res. 2018 Sep;119:105-116 - PubMed
  2. J Theor Biol. 2008 Feb 21;250(4):684-704 - PubMed
  3. Comput Methods Appl Mech Eng. 2018 Aug 15;338:97-116 - PubMed
  4. J Theor Biol. 2003 Nov 21;225(2):257-74 - PubMed
  5. Trends Ecol Evol. 2013 Oct;28(10):597-604 - PubMed
  6. Bull Math Biol. 2013 Aug;75(8):1377-99 - PubMed
  7. N Engl J Med. 1971 Nov 18;285(21):1182-6 - PubMed
  8. Int J Radiat Oncol Biol Phys. 1989 Jul;17(1):91-9 - PubMed
  9. Proc Inst Mech Eng H. 2021 Apr;235(4):459-469 - PubMed
  10. J Theor Biol. 2018 Jan 7;436:120-134 - PubMed
  11. J Theor Biol. 2017 Apr 21;419:211-226 - PubMed
  12. Bull Math Biol. 2004 Sep;66(5):1039-91 - PubMed
  13. Med Biol Eng Comput. 2016 Mar;54(2-3):547-58 - PubMed
  14. J Natl Cancer Inst. 1974 Feb;52(2):413-27 - PubMed
  15. Int J Numer Method Biomed Eng. 2019 Nov;35(11):e3253 - PubMed
  16. Bull Math Biol. 1998 Sep;60(5):857-99 - PubMed
  17. J Math Biol. 2014 Oct;69(4):839-73 - PubMed
  18. Front Oncol. 2013 May 10;3:111 - PubMed
  19. J Biol Eng. 2012 Apr 25;6(1):4 - PubMed
  20. Annu Rev Biomed Eng. 2011 Aug 15;13:127-55 - PubMed
  21. PLoS One. 2011 Apr 13;6(4):e14790 - PubMed
  22. Microvasc Res. 2015 May;99:43-56 - PubMed
  23. Angiogenesis. 2008;11(1):3-10 - PubMed
  24. J Theor Biol. 2009 Oct 21;260(4):545-62 - PubMed
  25. J Theor Biol. 2006 Dec 21;243(4):532-41 - PubMed
  26. PLoS One. 2015 Jun 05;10(6):e0128878 - PubMed
  27. Math Biosci. 2018 Dec;306:32-48 - PubMed
  28. Comput Methods Appl Mech Eng. 2017 Sep 1;324:413-437 - PubMed
  29. Microcirculation. 2020 Jan;27(1):e12584 - PubMed
  30. Cancer Res. 2004 Feb 1;64(3):1094-101 - PubMed
  31. Sci Rep. 2020 Feb 20;10(1):3025 - PubMed
  32. J Exp Med. 1972 Aug 1;136(2):261-76 - PubMed
  33. Integr Biol (Camb). 2013 Sep;5(9):1096-109 - PubMed
  34. PLoS Comput Biol. 2018 Mar 9;14(3):e1006049 - PubMed
  35. Phys Biol. 2014 Nov 26;11(6):065004 - PubMed
  36. Int J Numer Method Biomed Eng. 2018 Mar;34(3): - PubMed
  37. Tissue Eng Part A. 2008 Apr;14(4):559-69 - PubMed
  38. J Math Biol. 2009 Apr;58(4-5):723-63 - PubMed
  39. J Theor Biol. 2013 Mar 7;320:86-99 - PubMed
  40. J Theor Biol. 1971 Feb;30(2):225-34 - PubMed
  41. J Theor Biol. 2006 Aug 7;241(3):564-89 - PubMed
  42. IET Syst Biol. 2009 May;3(3):180-90 - PubMed
  43. Proc Inst Mech Eng H. 2020 Oct;234(10):1051-1069 - PubMed
  44. Microvasc Res. 2012 Sep;84(2):188-204 - PubMed
  45. J Natl Cancer Inst. 2001 Feb 21;93(4):266-76 - PubMed
  46. J Math Biol. 2016 Jun;72(7):1775-809 - PubMed
  47. Ann Nucl Med. 2017 Feb;31(2):109-124 - PubMed
  48. Nat Rev Cancer. 2017 Dec;17(12):738-750 - PubMed

MeSH terms

Publication Types