Display options
Share it on

Front Physiol. 2021 Jun 25;12:702646. doi: 10.3389/fphys.2021.702646. eCollection 2021.

Hepatic Branch Vagotomy Modulates the Gut-Liver-Brain Axis in Murine Cirrhosis.

Frontiers in physiology

Yuan Zhang, Jason D Kang, Derrick Zhao, Siddartha S Ghosh, Yanyan Wang, Yunling Tai, Javier Gonzalez-Maeso, Masoumeh Sikaroodi, Patrick M Gillevet, H Robert Lippman, Phillip B Hylemon, Huiping Zhou, Jasmohan S Bajaj

Affiliations

  1. Division of Microbiology and Immunology, Central Virginia Veterans Health Care System, Virginia Commonwealth University, Richmond, VA, United States.
  2. Division of Nephrology, Virginia Commonwealth University, Richmond, VA, United States.
  3. Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, United States.
  4. Microbiome Analysis Center, George Mason University, Manassas, VA, United States.
  5. Department of Pathology, Central Virginia Veterans Health Care System, Richmond, VA, United States.
  6. Division of Gastroenterology, Hepatology, and Nutrition, Central Virginia Veterans Health Care System, Virginia Commonwealth University, Richmond, VA, United States.

PMID: 34248683 PMCID: PMC8268007 DOI: 10.3389/fphys.2021.702646

Abstract

CONCLUSIONS: Hepatic vagal innervation affects the gut microbial composition, hepatic inflammation and steatosis, and cortical inflammation and BDNF expression and could be a critical modulator of the gut-liver-brain axis with consequences for HE development.

Copyright © 2021 Zhang, Kang, Zhao, Ghosh, Wang, Tai, Gonzalez-Maeso, Sikaroodi, Gillevet, Lippman, Hylemon, Zhou and Bajaj.

Keywords: BDNF; hepatic encephalopathy; inflammation; microbiota (16S); pathobiont; vagotomy

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. Hepatology. 2020 Feb;71(2):611-626 - PubMed
  2. Nat Commun. 2020 Oct 5;11(1):4982 - PubMed
  3. Hepatology. 2016 Jun;63(6):1860-74 - PubMed
  4. Front Med (Lausanne). 2020 Feb 27;7:62 - PubMed
  5. J Endocrinol. 2010 Apr;205(1):37-47 - PubMed
  6. Cell Metab. 2005 Jan;1(1):53-61 - PubMed
  7. Genome Biol. 2011 Jun 24;12(6):R60 - PubMed
  8. J Biol Chem. 2001 Mar 30;276(13):9800-7 - PubMed
  9. Hepatology. 2016 Mar;63(3):764-75 - PubMed
  10. J Clin Exp Hepatol. 2018 Sep;8(3):262-271 - PubMed
  11. J Hepatol. 2012 Jun;56(6):1283-92 - PubMed
  12. Microbiol Spectr. 2017 Aug;5(4): - PubMed
  13. Transl Psychiatry. 2017 May 16;7(5):e1128 - PubMed
  14. J Hepatol. 2011 Apr;54(4):640-9 - PubMed
  15. Chem Biodivers. 2010 May;7(5):1065-75 - PubMed
  16. Glia. 2015 Jan;63(1):37-50 - PubMed
  17. Hepatology. 2014 Aug;60(2):715-35 - PubMed
  18. Liver Int. 2009 Jul;29(6):783-8 - PubMed
  19. J Hepatol. 2004 Feb;40(2):247-54 - PubMed
  20. Gut. 2016 May;65(5):830-9 - PubMed
  21. Brain Behav Immun. 2018 May;70:214-232 - PubMed
  22. Proc Natl Acad Sci U S A. 2004 May 4;101(18):7106-11 - PubMed
  23. Hepatology. 2016 Oct;64(4):1232-48 - PubMed
  24. J Hepatol. 2015 Apr;62(4):913-20 - PubMed
  25. Am J Physiol Gastrointest Liver Physiol. 2018 Nov 1;315(5):G651-G658 - PubMed
  26. Protein Cell. 2018 Feb;9(2):178-195 - PubMed
  27. Hepatol Commun. 2019 Jun 06;3(8):1098-1112 - PubMed
  28. Transl Psychiatry. 2016 Nov 22;6(11):e958 - PubMed
  29. Liver Int. 2021 Jul;41(7):1474-1488 - PubMed
  30. Physiol Rev. 2019 Oct 1;99(4):1877-2013 - PubMed
  31. Gastroenterology. 2011 Aug;141(2):599-609, 609.e1-3 - PubMed
  32. Hepatol Commun. 2017 Feb 27;1(1):61-70 - PubMed
  33. Clin Transl Gastroenterol. 2016 Aug 25;7(8):e187 - PubMed
  34. Biochim Biophys Acta. 2016 May;1861(5):482-90 - PubMed
  35. Proc Natl Acad Sci U S A. 2013 May 28;110(22):9066-71 - PubMed
  36. PLoS One. 2014 Apr 23;9(4):e95433 - PubMed

Publication Types