Display options
Share it on

J Neuroinflammation. 2021 Jul 05;18(1):151. doi: 10.1186/s12974-021-02197-w.

Traumatic brain injury results in unique microglial and astrocyte transcriptomes enriched for type I interferon response.

Journal of neuroinflammation

Brittany P Todd, Michael S Chimenti, Zili Luo, Polly J Ferguson, Alexander G Bassuk, Elizabeth A Newell

Affiliations

  1. Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA.
  2. Iowa Institute of Human Genetics, Bioinformatics Division, University of Iowa, Iowa City, IA, USA.
  3. Department of Pediatrics, University of Iowa, Iowa City, IA, USA.
  4. Department of Pediatrics, University of Iowa, Iowa City, IA, USA. [email protected].
  5. Department of Pediatrics, University of Iowa, Iowa City, IA, USA. [email protected].

PMID: 34225752 PMCID: PMC8259035 DOI: 10.1186/s12974-021-02197-w

Abstract

BACKGROUND: Traumatic brain injury (TBI) is a leading cause of death and disability that lacks neuroprotective therapies. Following a TBI, secondary injury response pathways are activated and contribute to ongoing neurodegeneration. Microglia and astrocytes are critical neuroimmune modulators with early and persistent reactivity following a TBI. Although histologic glial reactivity is well established, a precise understanding of microglia and astrocyte function following trauma remains unknown.

METHODS: Adult male C57BL/6J mice underwent either fluid percussion or sham injury. RNA sequencing of concurrently isolated microglia and astrocytes was conducted 7 days post-injury to evaluate cell-type-specific transcriptional responses to TBI. Dual in situ hybridization and immunofluorescence were used to validate the TBI-induced gene expression changes in microglia and astrocytes and to identify spatial orientation of cells expressing these genes. Comparative analysis was performed between our glial transcriptomes and those from prior reports in mild TBI and other neurologic diseases to determine if severe TBI induces unique states of microglial and astrocyte activation.

RESULTS: Our findings revealed sustained, lineage-specific transcriptional changes in both microglia and astrocytes, with microglia showing a greater transcriptional response than astrocytes at this subacute time point. Microglia and astrocytes showed overlapping enrichment for genes related to type I interferon signaling and MHC class I antigen presentation. The microglia and astrocyte transcriptional response to severe TBI was distinct from prior reports in mild TBI and other neurodegenerative and neuroinflammatory diseases.

CONCLUSION: Concurrent lineage-specific analysis revealed novel TBI-specific transcriptional changes; these findings highlight the importance of cell-type-specific analysis of glial reactivity following TBI and may assist with the identification of novel, targeted therapies.

Keywords: Astrocytes; Microglia; Traumatic brain injury; Type I interferon

References

  1. Genome Res. 2007 Oct;17(10):1537-45 - PubMed
  2. Nat Neurosci. 2016 Mar;19(3):504-16 - PubMed
  3. Brain. 2018 Mar 1;141(3):822-836 - PubMed
  4. J Neuropathol Exp Neurol. 2014 Jan;73(1):14-29 - PubMed
  5. J Head Trauma Rehabil. 2016 Jan-Feb;31(1):E55-62 - PubMed
  6. Curr Protoc Bioinformatics. 2017 Jun 27;57:7.15.1-7.15.30 - PubMed
  7. J Neurosci. 2021 Feb 17;41(7):1597-1616 - PubMed
  8. Sci Rep. 2019 Aug 15;9(1):11771 - PubMed
  9. Bioinformatics. 2009 Jan 1;25(1):75-82 - PubMed
  10. Cell. 2017 Jun 15;169(7):1276-1290.e17 - PubMed
  11. Proc Natl Acad Sci U S A. 2018 Jan 9;115(2):E302-E309 - PubMed
  12. J Neurosci. 2020 Mar 11;40(11):2357-2370 - PubMed
  13. Genome Res. 2013 Nov;23(11):1885-93 - PubMed
  14. Cell. 2018 May 17;173(5):1073-1081 - PubMed
  15. J Neuroinflammation. 2020 Apr 14;17(1):115 - PubMed
  16. J Neurosci. 2017 Aug 23;37(34):8292-8308 - PubMed
  17. Nat Med. 2020 Jan;26(1):131-142 - PubMed
  18. Immunity. 2019 Jan 15;50(1):253-271.e6 - PubMed
  19. Nat Commun. 2018 Sep 25;9(1):3894 - PubMed
  20. Genome Biol. 2014;15(12):550 - PubMed
  21. Bioinformatics. 2016 Jan 15;32(2):292-4 - PubMed
  22. Neurosci Lett. 2017 Jul 13;653:31-38 - PubMed
  23. Glia. 2017 Sep;65(9):1423-1438 - PubMed
  24. Bioinformatics. 2012 Oct 15;28(20):2678-9 - PubMed
  25. J Neurotrauma. 2015 Jul 15;32(14):1101-8 - PubMed
  26. eNeuro. 2016 Feb 18;3(1): - PubMed
  27. Shock. 2014 Jun;41(6):499-503 - PubMed
  28. J Neurotrauma. 2015 Jan 15;32(2):127-38 - PubMed
  29. J Neurosci. 2012 May 2;32(18):6391-410 - PubMed
  30. Front Cell Neurosci. 2019 Aug 08;13:307 - PubMed
  31. eNeuro. 2018 Apr 13;5(2): - PubMed
  32. Exp Neurol. 2018 Feb;300:167-178 - PubMed
  33. F1000Res. 2015 Dec 30;4:1521 - PubMed
  34. Front Neurol. 2013 Mar 21;4:28 - PubMed
  35. Cell Mol Neurobiol. 2016 Jan;36(1):27-36 - PubMed
  36. Cell Death Discov. 2020 Sep 18;6:88 - PubMed
  37. Proc Natl Acad Sci U S A. 2018 Feb 20;115(8):E1896-E1905 - PubMed
  38. Nat Commun. 2016 Apr 21;7:11295 - PubMed
  39. J Neurotrauma. 2020 Feb 15;37(4):635-646 - PubMed
  40. Nat Methods. 2015 Apr;12(4):357-60 - PubMed
  41. Cell Rep. 2017 Oct 10;21(2):366-380 - PubMed
  42. J Head Trauma Rehabil. 2014 Nov-Dec;29(6):E1-9 - PubMed
  43. J Clin Invest. 2020 Apr 1;130(4):1912-1930 - PubMed
  44. J Surg Res. 2020 Feb;246:113-122 - PubMed
  45. Bioinformatics. 2009 Aug 15;25(16):2078-9 - PubMed
  46. Nat Methods. 2017 Apr;14(4):417-419 - PubMed
  47. JCI Insight. 2018 Jul 12;3(13): - PubMed
  48. Brain. 2013 Jan;136(Pt 1):28-42 - PubMed
  49. J Neurotrauma. 2005 Jan;22(1):42-75 - PubMed
  50. EMBO Mol Med. 2020 Apr 7;12(4):e11002 - PubMed

Publication Types

Grant support