Display options
Share it on

Cell Death Discov. 2021 Jun 26;7(1):153. doi: 10.1038/s41420-021-00549-2.

Desmin aggrephagy in rat and human ischemic heart failure through PKCζ and GSK3β as upstream signaling pathways.

Cell death discovery

Marion Bouvet, Emilie Dubois-Deruy, Annie Turkieh, Paul Mulder, Victoriane Peugnet, Maggy Chwastyniak, Olivia Beseme, Arthur Dechaumes, Philippe Amouyel, Vincent Richard, Nicolas Lamblin, Florence Pinet

Affiliations

  1. INSERM, Univ. Lille, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France.
  2. Normandie Univ, UNIROUEN, Inserm U1096, FHU-REMOD-VHF, 76000, Rouen, France.
  3. INSERM, Univ. Lille, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France. [email protected].

PMID: 34226534 PMCID: PMC8257599 DOI: 10.1038/s41420-021-00549-2

Abstract

Post-translational modifications of cardiac proteins could participate to left contractile dysfunction resulting in heart failure. Using a rat model of ischemic heart failure, we showed an accumulation of phosphorylated desmin leading to toxic aggregates in cardiomyocytes, but the cellular mechanisms are unknown. The same rat model was used to decipher the kinases involved in desmin phosphorylation and the proteolytic systems present in rat and human failing hearts. We used primary cultures of neonate rat cardiomyocytes for testing specific inhibitors of kinases and for characterizing the autophagic processes able to clear desmin aggregates. We found a significant increase of active PKCζ, no modulation of ubitiquitin-proteasome system, a defect in macroautophagy, and an activation of chaperone-mediated autophagy in heart failure rats. We validated in vitro that PKCζ inhibition induced a significant decrease of GSK3β and of soluble desmin. In vitro activation of ubiquitination of proteins and of chaperone-mediated autophagy is able to decrease soluble and insoluble forms of desmin in cardiomyocytes. These data demonstrate a novel signaling pathway implicating activation of PKCζ in desmin phosphorylation associated with a defect of proteolytic systems in ischemic heart failure, leading to desmin aggrephagy. Our in vitro data demonstrated that ubiquitination of proteins and chaperone-mediated autophagy are required for eliminating desmin aggregates with the contribution of its chaperone protein, α-crystallin Β-chain. Modulation of the kinases involved under pathological conditions may help preserving desmin intermediate filaments structure and thus protect the structural integrity of contractile apparatus of cardiomyocytes by limiting desmin aggregates formation.

References

  1. Trends Cell Biol. 2012 Aug;22(8):407-17 - PubMed
  2. Eur Heart J. 2011 Jan;32(1):115-23 - PubMed
  3. Curr Opin Cell Biol. 2015 Feb;32:113-20 - PubMed
  4. Biochim Biophys Acta. 2015 Feb;1852(2):188-94 - PubMed
  5. J Pathol. 2004 Nov;204(4):418-27 - PubMed
  6. Cardiovasc Res. 2011 Jul 15;91(2):330-9 - PubMed
  7. Cardiovasc Res. 2014 Apr 1;102(1):24-34 - PubMed
  8. Acta Neuropathol. 2013 Jan;125(1):47-75 - PubMed
  9. J Proteomics. 2017 Jan 30;152:283-299 - PubMed
  10. Cell Stress Chaperones. 2018 Jul;23(4):491-505 - PubMed
  11. Am J Physiol Heart Circ Physiol. 2003 Jun;284(6):H2277-87 - PubMed
  12. Cardiovasc Res. 2013 May 1;98(2):277-85 - PubMed
  13. Mol Biol Cell. 2003 Apr;14(4):1489-500 - PubMed
  14. Meat Sci. 2004 Nov;68(3):447-56 - PubMed
  15. FEBS Lett. 1994 Dec 19;356(2-3):275-8 - PubMed
  16. EMBO J. 2017 Jul 3;36(13):1811-1836 - PubMed
  17. Mol Pharmacol. 2015 Oct;88(4):728-35 - PubMed
  18. J Mol Cell Cardiol. 2016 Dec;101:127-133 - PubMed
  19. Circ Res. 2018 May 11;122(10):e75-e83 - PubMed
  20. Proc Natl Acad Sci U S A. 2004 Jul 6;101(27):10132-6 - PubMed
  21. J Cell Biol. 2017 May 1;216(5):1231-1241 - PubMed
  22. J Biol Chem. 2011 Oct 7;286(40):35007-19 - PubMed
  23. Trends Biochem Sci. 1990 Aug;15(8):305-9 - PubMed
  24. J Mol Cell Cardiol. 2015 Oct;87:214-24 - PubMed
  25. Exp Cell Res. 2007 Jun 10;313(10):2063-76 - PubMed
  26. Cardiovasc Res. 2020 Mar 1;116(3):483-504 - PubMed
  27. J Cell Biol. 2012 Aug 20;198(4):575-89 - PubMed
  28. Mol Cell Biol. 2015 Dec 28;36(5):731-41 - PubMed
  29. Circ Res. 2000 Apr 28;86(8):846-53 - PubMed
  30. Front Endocrinol (Lausanne). 2018 Oct 05;9:598 - PubMed
  31. Curr Biol. 2010 Jan 26;20(2):143-8 - PubMed
  32. Circulation. 1990 Apr;81(4):1161-72 - PubMed
  33. Circulation. 1997 Mar 4;95(5):1314-9 - PubMed
  34. J Cell Sci. 2016 Oct 15;129(20):3705-3720 - PubMed
  35. Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20900-5 - PubMed
  36. Histochem Cell Biol. 2014 Jan;141(1):1-16 - PubMed
  37. Circulation. 1994 Jan;89(1):68-75 - PubMed
  38. Circ Res. 2015 May 22;116(11):1863-82 - PubMed
  39. Curr Protoc Cell Biol. 2001 May;Chapter 3:Unit 3.6 - PubMed
  40. Cell Death Dis. 2019 Aug 13;10(8):608 - PubMed
  41. Biochim Biophys Acta Proteins Proteom. 2017 Jul;1865(7):828-836 - PubMed
  42. Biochem Biophys Rep. 2016 Feb 27;6:54-62 - PubMed
  43. Circ Res. 2002 May 31;90(10):1055-63 - PubMed
  44. Nat Cell Biol. 2018 Feb;20(2):198-210 - PubMed
  45. J Intern Med. 2012 Sep;272(3):287-97 - PubMed
  46. J Cell Biol. 2018 Oct 1;217(10):3698-3714 - PubMed
  47. J Proteome Res. 2008 Nov;7(11):5004-16 - PubMed
  48. J Heart Lung Transplant. 2017 Jul;36(7):708-714 - PubMed
  49. Cardiovasc Res. 2015 Jul 1;107(1):56-65 - PubMed
  50. J Biol Chem. 2007 Oct 19;282(42):30691-8 - PubMed
  51. Front Physiol. 2020 Jun 04;11:586 - PubMed
  52. Circ Res. 2015 Jan 2;116(1):138-49 - PubMed
  53. Am J Physiol Heart Circ Physiol. 2017 Jul 1;313(1):H32-H45 - PubMed

Publication Types

Grant support