Display options
Share it on

Gels. 2021 Jun 21;7(2). doi: 10.3390/gels7020074.

Hydrogels for Three-Dimensional Ionizing-Radiation Dosimetry.

Gels (Basel, Switzerland)

Maurizio Marrale, Francesco d'Errico

Affiliations

  1. Department of Physics and Chemistry, "Emilio Segrè" ATeN Center, University of Palermo, 90128 Palermo, Italy.
  2. Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Catania, 95123 Catania, Italy.
  3. Scuola di Ingegneria, Università degli Studi di Pisa, 56126 Pisa, Italy.
  4. Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pisa, 56127 Pisa, Italy.
  5. School of Medicine, Yale University New Haven, CT 06510, USA.

PMID: 34205640 PMCID: PMC8293215 DOI: 10.3390/gels7020074

Abstract

Radiation-sensitive gels are among the most recent and promising developments for radiation therapy (RT) dosimetry. RT dosimetry has the twofold goal of ensuring the quality of the treatment and the radiation protection of the patient. Benchmark dosimetry for acceptance testing and commissioning of RT systems is still based on ionization chambers. However, even the smallest chambers cannot resolve the steep dose gradients of up to 30-50% per mm generated with the most advanced techniques. While a multitude of systems based, e.g., on luminescence, silicon diodes and radiochromic materials have been developed, they do not allow the truly continuous 3D dose measurements offered by radiation-sensitive gels. The gels are tissue equivalent, so they also serve as phantoms, and their response is largely independent of radiation quality and dose rate. Some of them are infused with ferrous sulfate and rely on the radiation-induced oxidation of ferrous ions to ferric ions (Fricke-gels). Other formulations consist of monomers dispersed in a gelatinous medium (Polyacrylamide gels) and rely on radiation-induced polymerization, which creates a stable polymer structure. In both gel types, irradiation causes changes in proton relaxation rates that are proportional to locally absorbed dose and can be imaged using magnetic resonance imaging (MRI). Changes in color and/or opacification of the gels also occur upon irradiation, allowing the use of optical tomography techniques. In this work, we review both Fricke and polyacrylamide gels with emphasis on their chemical and physical properties and on their applications for radiation dosimetry.

Keywords: ferrous sulfate; glutaraldehyde; magnetic resonance imaging; optical tomography; poly-vinyl alcohol; polyacrylamide gel; spectrophotometry; three-dimensional dosimetry; xylenol-orange

References

  1. Phys Med. 2018 Sep;53:137-144 - PubMed
  2. Phys Med. 2016 Sep;32(9):1156-61 - PubMed
  3. Australas Phys Eng Sci Med. 2017 Sep;40(3):651-658 - PubMed
  4. Radiat Prot Dosimetry. 2006;118(2):205-12 - PubMed
  5. J Cancer Res Ther. 2018 Apr-Jun;14(3):662-665 - PubMed
  6. Phys Med. 2015 Dec;31(8):942-947 - PubMed
  7. Biomed Phys Eng Express. 2019 Nov 25;6(1):015004 - PubMed
  8. Med Phys. 1998 Sep;25(9):1741-50 - PubMed
  9. Phys Med Biol. 2010 Mar 7;55(5):R1-63 - PubMed
  10. Phys Med Biol. 2002 Jun 7;47(11):1881-90 - PubMed
  11. Phys Med. 2017 May;37:75-81 - PubMed
  12. Radiother Oncol. 2017 Dec;125(3):426-432 - PubMed
  13. Phys Med Biol. 1994 Apr;39(4):703-17 - PubMed
  14. Med Phys. 2005 Dec;32(12):3750-4 - PubMed
  15. Adv Biomed Res. 2015 May 11;4:88 - PubMed
  16. Med Phys. 2020 Feb;47(2):e19-e51 - PubMed
  17. Appl Radiat Isot. 2021 Aug;174:109754 - PubMed
  18. Polymers (Basel). 2018 Oct 26;10(11): - PubMed
  19. J Cancer Res Ther. 2018 Jan-Mar;14(2):308-313 - PubMed
  20. J Cancer Res Ther. 2018 Jan-Mar;14(2):287-291 - PubMed
  21. Radiol Phys Technol. 2016 Jan;9(1):37-43 - PubMed
  22. Brachytherapy. 2020 May - Jun;19(3):362-371 - PubMed
  23. J Biomed Phys Eng. 2017 Sep 01;7(3):299-304 - PubMed
  24. Phys Med Biol. 1997 Aug;42(8):1575-85 - PubMed
  25. Med Phys. 2005 Jul;32(7):2288-94 - PubMed
  26. Med Phys. 2002 May;29(5):797-802 - PubMed
  27. Phys Med Biol. 2004 Sep 7;49(17):3847-55 - PubMed
  28. J Radiat Res. 2016 Jun;57(3):318-24 - PubMed
  29. Phys Med Biol. 2005 Mar 21;50(6):1235-50 - PubMed
  30. Phys Med Biol. 2018 Mar 29;63(7):075014 - PubMed
  31. Phys Med Biol. 2018 Aug 01;63(15):15NT03 - PubMed
  32. Phys Med Biol. 2020 Nov 24;65(22):225030 - PubMed
  33. Magn Reson Imaging. 2000 Jul;18(6):721-31 - PubMed
  34. Med Phys. 2020 Mar;47(3):1404-1410 - PubMed
  35. Phys Med Biol. 2019 Apr 12;64(8):085015 - PubMed
  36. Phys Med. 2017 Feb;34:1-6 - PubMed
  37. Phys Med Biol. 2018 Sep 06;63(17):175010 - PubMed
  38. Appl Radiat Isot. 2009 Mar;67(3):393-8 - PubMed
  39. Phys Med. 2017 Jan;33:121-126 - PubMed
  40. Z Med Phys. 2020 Aug;30(3):185-193 - PubMed
  41. J Biomed Phys Eng. 2019 Apr 01;9(2):199-210 - PubMed
  42. Z Med Phys. 2019 May;29(2):162-172 - PubMed
  43. Phys Med. 2019 Jul;63:1-6 - PubMed
  44. Polymers (Basel). 2019 Oct 19;11(10): - PubMed
  45. Appl Radiat Isot. 2015 Sep;103:72-81 - PubMed
  46. Phys Med Biol. 1991 Aug;36(8):1117-25 - PubMed
  47. Med Phys. 2009 Oct;36(10):4654-63 - PubMed
  48. Phys Med. 2020 May;73:8-12 - PubMed
  49. Phys Med Biol. 1990 Dec;35(12):1611-22 - PubMed
  50. Phys Med Biol. 2000 Apr;45(4):955-69 - PubMed
  51. Phys Med Biol. 2010 Sep 21;55(18):5269-81 - PubMed
  52. Australas Phys Eng Sci Med. 2005 Jun;28(2):76-85 - PubMed
  53. Phys Med Biol. 2020 Nov 24;65(22):225031 - PubMed
  54. J Biomed Phys Eng. 2019 Feb 01;9(1):89-96 - PubMed
  55. Phys Med Biol. 2018 May 29;63(11):11NT02 - PubMed
  56. Phys Med. 2019 Jan;57:72-79 - PubMed
  57. Med Phys. 1996 Jan;23(1):15-23 - PubMed
  58. Phys Med Biol. 2015 Jun 7;60(11):4399-411 - PubMed
  59. Phys Med. 2016 Apr;32(4):541-56 - PubMed
  60. Phys Med Biol. 1996 Sep;41(9):1745-53 - PubMed
  61. Radiother Oncol. 1998 Dec;49(3):305-16 - PubMed
  62. Phys Med Biol. 2017 Feb 7;62(3):986-1008 - PubMed
  63. Magn Reson Imaging. 1993;11(2):253-8 - PubMed
  64. Appl Radiat Isot. 2019 Aug;150:43-52 - PubMed
  65. Phys Med Biol. 2017 Jan 21;62(2):573-595 - PubMed
  66. Phys Med Biol. 2014 Aug 7;59(15):N129-37 - PubMed
  67. Polymers (Basel). 2018 Jun 20;10(6): - PubMed
  68. J Xray Sci Technol. 2020;28(4):641-658 - PubMed
  69. Australas Phys Eng Sci Med. 2017 Mar;40(1):159-165 - PubMed
  70. PLoS One. 2019 Feb 21;14(2):e0212546 - PubMed
  71. Med Phys. 2020 Aug;47(8):3259-3262 - PubMed
  72. Radiother Oncol. 1998 Sep;48(3):283-91 - PubMed
  73. Phys Med Biol. 1984 Oct;29(10):1189-97 - PubMed
  74. J Cancer Res Ther. 2018 Jan-Mar;14(2):278-286 - PubMed
  75. Phys Med Biol. 2019 Oct 16;64(20):205011 - PubMed
  76. Z Med Phys. 2020 Aug;30(3):171-172 - PubMed
  77. J Contemp Brachytherapy. 2016 Oct;8(5):422-428 - PubMed
  78. Radiol Phys Technol. 2018 Dec;11(4):375-381 - PubMed
  79. PLoS One. 2016 May 18;11(5):e0155797 - PubMed
  80. Appl Radiat Isot. 2020 Dec;166:109233 - PubMed
  81. Phys Med Biol. 2012 Jun 21;57(12):3853-68 - PubMed
  82. Med Phys. 2003 Aug;30(8):2140-8 - PubMed
  83. Med Phys. 2016 Dec;43(12):6525 - PubMed
  84. Phys Med Biol. 2004 Nov 21;49(22):5135-44 - PubMed
  85. Med Phys. 1987 May-Jun;14(3):382-4 - PubMed
  86. Rep Pract Oncol Radiother. 2020 Jan-Feb;25(1):100-103 - PubMed
  87. J Cancer Res Ther. 2018 Apr-Jun;14(3):563-566 - PubMed
  88. Dose Response. 2016 Feb 11;14(1):1559325815625647 - PubMed
  89. Phys Med Biol. 2001 Dec;46(12):3105-13 - PubMed
  90. Comput Methods Programs Biomed. 2018 Jun;159:37-50 - PubMed
  91. Phys Med Biol. 1996 Mar;41(3):509-21 - PubMed
  92. Med Eng Phys. 2019 Apr;66:102-106 - PubMed
  93. Phys Med. 2020 Jan;69:134-146 - PubMed
  94. Phys Med Biol. 1998 Mar;43(3):695-702 - PubMed
  95. Appl Radiat Isot. 2018 Nov;141:210-218 - PubMed
  96. Med Phys. 2020 Aug;47(8):3600-3613 - PubMed
  97. Appl Radiat Isot. 2019 Jan;143:47-59 - PubMed
  98. Histochem J. 1995 Nov;27(11):906-13 - PubMed
  99. Phys Med Biol. 1993 Jan;38(1):139-50 - PubMed
  100. Phys Med Biol. 1989 Jan;34(1):43-52 - PubMed
  101. Biomed Phys Eng Express. 2020 Sep 08;6(5):055017 - PubMed
  102. Med Phys. 2006 Jul;33(7):2586-97 - PubMed
  103. Phys Med Biol. 1996 Dec;41(12):2705-17 - PubMed
  104. Med Phys. 2001 Jul;28(7):1436-45 - PubMed
  105. Australas Phys Eng Sci Med. 2001 Mar;24(1):19-30 - PubMed
  106. Appl Radiat Isot. 2010 Jan;68(1):144-54 - PubMed
  107. Appl Radiat Isot. 2015 Nov;105:98-104 - PubMed
  108. PLoS One. 2017 Jan 6;12(1):e0168737 - PubMed
  109. Appl Radiat Isot. 2015 Nov;105:257-263 - PubMed
  110. Med Phys. 2003 Feb;30(2):132-7 - PubMed
  111. Ultrasound Med Biol. 2010 Feb;36(2):268-75 - PubMed
  112. Phys Med Biol. 2019 Feb 11;64(4):045010 - PubMed
  113. Phys Med Biol. 2005 May 7;50(9):1979-90 - PubMed
  114. Phys Med Biol. 2009 Mar 21;54(6):1661-72 - PubMed
  115. Med Phys. 2017 Feb;44(2):736-746 - PubMed
  116. Magn Reson Imaging. 2002 Jul;20(6):495-502 - PubMed
  117. Phys Med Biol. 2003 Apr 21;48(8):1065-74 - PubMed
  118. Magn Reson Imaging. 1997;15(2):211-21 - PubMed

Publication Types

Grant support