Display options
Share it on

Dis Model Mech. 2022 Feb 01;15(2). doi: 10.1242/dmm.048887. Epub 2021 Aug 11.

Tissue architecture delineates field cancerization in BRAFV600E-induced tumor development.

Disease models & mechanisms

Elin Schoultz, Ellen Johansson, Carmen Moccia, Iva Jakubikova, Naveen Ravi, Shawn Liang, Therese Carlsson, Mikael Montelius, Konrad Patyra, Jukka Kero, Kajsa Paulsson, Henrik Fagman, Martin O Bergo, Mikael Nilsson

Affiliations

  1. Sahlgrenska Center for Cancer Research, Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Göteborg, Sweden.
  2. Faculty of Medicine, Charles University, Hradec Kralove, Czech Republic.
  3. Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund SE-22184, Sweden.
  4. Department of Radiology, Institute of Clinical Sciences, University of Gothenburg, SE-41345 Göteborg, Sweden.
  5. Department of Endocrinology, University of Turku, Åbo FI-20521, Finland.
  6. Department of Clinical Pathology, Sahlgrenska University Hospital, Göteborg SE-41345, Sweden.
  7. Department of Biosciences and Nutrition, Karolinska Institute, Huddinge SE-14183, Sweden.

PMID: 34379110 PMCID: PMC8380047 DOI: 10.1242/dmm.048887

Abstract

Cancer cells hijack developmental growth mechanisms but whether tissue morphogenesis and architecture modify tumorigenesis is unknown. Here, we characterized a new mouse model of sporadic thyroid carcinogenesis based on inducible expression of BRAF carrying a Val600 Glu (V600E) point mutation (BRAFV600E) from the thyroglobulin promoter (TgCreERT2). Spontaneous activation of this Braf-mutant allele due to leaky activity of the Cre recombinase revealed that intrinsic properties of thyroid follicles determined BRAF-mutant cell fate. Papillary thyroid carcinomas developed multicentrically within a normal microenvironment. Each tumor originated from a single follicle that provided a confined space for growth of a distinct tumor phenotype. Lineage tracing revealed oligoclonal tumor development in infancy and early selection of BRAFV600E kinase inhibitor-resistant clones. Somatic mutations were few, non-recurrent and limited to advanced tumors. Female mice developed larger tumors than males, reproducing the gender difference of human thyroid cancer. These data indicate that BRAFV600E-induced tumorigenesis is spatiotemporally regulated depending on the maturity and heterogeneity of follicles. Moreover, thyroid tissue organization seems to determine whether a BRAF-mutant lineage becomes a cancerized lineage. The TgCreERT2;BrafCA/+ sporadic thyroid cancer mouse model provides a new tool to evaluate drug therapy at different stages of tumor evolution.

© 2021. Published by The Company of Biologists Ltd.

Keywords: Braf mutation; Cancer; Development; Oligoclonal; Oncogenic activation; Thyroid

Conflict of interest statement

Competing interests The authors declare no competing or financial interests.

References

  1. J Clin Endocrinol Metab. 2014 Aug;99(8):E1530-8 - PubMed
  2. Development. 2018 Jan 25;145(2): - PubMed
  3. Nat Rev Genet. 2019 Jul;20(7):404-416 - PubMed
  4. Nat Cell Biol. 2017 May;19(5):530-541 - PubMed
  5. Eur J Pediatr. 2000 Jun;159(6):456-8 - PubMed
  6. Endocr Relat Cancer. 2005 Jun;12(2):245-62 - PubMed
  7. J Clin Endocrinol Metab. 2013 Aug;98(8):E1414-21 - PubMed
  8. Endocrinol Metab (Seoul). 2019 Mar;34(1):11-22 - PubMed
  9. Development. 1995 Jul;121(7):1989-2003 - PubMed
  10. PLoS One. 2018 Aug 7;13(8):e0201365 - PubMed
  11. Cell. 2014 Oct 23;159(3):676-90 - PubMed
  12. Clin Endocrinol (Oxf). 1989 Dec;31(6):655-65 - PubMed
  13. Nat Rev Dis Primers. 2015 Dec 10;1:15077 - PubMed
  14. Bioinformatics. 2009 Jul 15;25(14):1754-60 - PubMed
  15. J Clin Invest. 2011 Dec;121(12):4700-11 - PubMed
  16. Endocrinology. 2013 Nov;154(11):4423-30 - PubMed
  17. Cancer. 1985 Aug 1;56(3):531-8 - PubMed
  18. Cancer Res. 2011 Jun 1;71(11):3863-71 - PubMed
  19. Proc Natl Acad Sci U S A. 2019 Mar 26;116(13):6140-6145 - PubMed
  20. J Clin Endocrinol Metab. 2016 Apr;101(4):1407-13 - PubMed
  21. Oncogene. 2010 Oct 21;29(42):5678-86 - PubMed
  22. Cancer Res. 2012 Oct 1;72(19):4875-82 - PubMed
  23. Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1615-20 - PubMed
  24. Eur Thyroid J. 2015 Sep;4(3):164-73 - PubMed
  25. Curr Top Dev Biol. 2013;106:123-70 - PubMed
  26. N Engl J Med. 2005 Jun 9;352(23):2406-12 - PubMed
  27. Nat Biotechnol. 2013 Mar;31(3):213-9 - PubMed
  28. Cancer Res. 1987 Mar 15;47(6):1646-51 - PubMed
  29. Mutat Res Rev Mutat Res. 2018 Jul - Sep;777:1-18 - PubMed
  30. Genome Res. 2010 Sep;20(9):1297-303 - PubMed
  31. J Clin Invest. 1985 Nov;76(5):1992-2002 - PubMed
  32. Oncologist. 2013;18(8):926-32 - PubMed
  33. Nat Cell Biol. 2018 Jun;20(6):699-709 - PubMed
  34. Nat Commun. 2017 Dec 8;8(1):1998 - PubMed
  35. Thyroid. 2014 Apr;24(4):625-38 - PubMed
  36. J Clin Endocrinol Metab. 2007 Sep;92(9):3511-6 - PubMed
  37. Respir Investig. 2013 Sep;51(3):128-33 - PubMed
  38. Cancer. 2005 May 1;103(9):1785-90 - PubMed
  39. J Clin Endocrinol Metab. 2006 Jul;91(7):2672-7 - PubMed
  40. Genesis. 2013 Jun;51(6):436-42 - PubMed
  41. Nat Commun. 2018 Nov 29;9(1):5079 - PubMed
  42. Oncogene. 2008 Dec;27 Suppl 2:S9-18 - PubMed
  43. Eur J Nucl Med Mol Imaging. 2003 Apr;30(4):525-31 - PubMed
  44. Nucleic Acids Res. 2010 Sep;38(16):e164 - PubMed
  45. Development. 2016 Jun 1;143(11):1958-70 - PubMed
  46. J Clin Endocrinol Metab. 1994 Jul;79(1):134-9 - PubMed
  47. J Pathol. 2016 May;239(1):72-83 - PubMed
  48. Genesis. 2007 Sep;45(9):593-605 - PubMed
  49. Cancers (Basel). 2020 Feb 07;12(2): - PubMed
  50. Endocr Relat Cancer. 2014 Oct;21(5):T273-83 - PubMed
  51. Thyroid. 2016 Apr;26(4):591-9 - PubMed
  52. Endocrinology. 1978 May;102(5):1576-86 - PubMed
  53. J Clin Endocrinol Metab. 2003 Jul;88(7):3284-91 - PubMed
  54. Genes Dev. 2007 Feb 15;21(4):379-84 - PubMed
  55. BMC Bioinformatics. 2012 Jun 18;13:134 - PubMed
  56. Nat Med. 2011 Mar;17(3):320-9 - PubMed
  57. Development. 2017 Jun 15;144(12):2123-2140 - PubMed
  58. Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4519-24 - PubMed
  59. Nat Rev Endocrinol. 2015 Jan;11(1):29-42 - PubMed
  60. Cancer Cell. 2018 Aug 13;34(2):242-255.e5 - PubMed
  61. Cancer Res. 2009 Jun 1;69(11):4885-93 - PubMed
  62. Nat Genet. 1999 Jan;21(1):70-1 - PubMed
  63. Oncogene. 2016 Apr 14;35(15):1909-18 - PubMed
  64. Future Oncol. 2010 Nov;6(11):1771-9 - PubMed
  65. Int J Exp Pathol. 2000 Apr;81(2):89-116 - PubMed
  66. Am J Pathol. 1989 Jan;134(1):141-7 - PubMed
  67. Genesis. 2014 Apr;52(4):333-40 - PubMed
  68. Bioinformatics. 2009 Sep 1;25(17):2283-5 - PubMed
  69. Cell Cycle. 2007 Jan 1;6(1):44-51 - PubMed
  70. J Endocrinol. 2010 Oct;207(1):17-25 - PubMed
  71. Mod Pathol. 2002 Dec;15(12):1294-301 - PubMed
  72. Thyroid. 2016 Feb;26(2):242-7 - PubMed
  73. Cancer Res. 2007 Feb 1;67(3):959-66 - PubMed
  74. Sci Rep. 2015 Nov 20;5:16976 - PubMed
  75. Proc Natl Acad Sci U S A. 2016 Feb 16;113(7):E854-63 - PubMed
  76. Endocr Rev. 1989 May;10(2):125-35 - PubMed
  77. Proc Natl Acad Sci U S A. 2003 Mar 18;100(6):3311-4 - PubMed
  78. Science. 2013 Nov 22;342(6161):995-8 - PubMed
  79. Mol Cell Endocrinol. 2013 Dec 5;381(1-2):241-54 - PubMed
  80. Development. 2019 Jul 5;146(13): - PubMed
  81. Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):11523-8 - PubMed

Publication Types

Grant support