Display options
Share it on

Stroke. 2021 Aug;52(9):2983-2991. doi: 10.1161/STROKEAHA.120.032619. Epub 2021 Aug 17.

Risk Prediction Using Polygenic Risk Scores for Prevention of Stroke and Other Cardiovascular Diseases.

Stroke

Gad Abraham, Loes Rutten-Jacobs, Michael Inouye

Affiliations

  1. Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (G.A., M.I.).
  2. Department of Clinical Pathology, University of Melbourne, Parkville, VIC, Australia (G.A., M.I.).
  3. Personalized Health Care Data Science, Real World Data, F. Hoffmann-La Roche Ltd, Basel, Switzerland (L.R.-J.).
  4. Cambridge Baker Systems Genomics Initiative (M.I.), Department of Public Health and Primary Care, University of Cambridge, United Kingdom.
  5. British Heart Foundation Cardiovascular Epidemiology Unit (M.I.), Department of Public Health and Primary Care, University of Cambridge, United Kingdom.
  6. British Heart Foundation Centre of Research Excellence, University of Cambridge, United Kingdom (M.I.).
  7. National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, United Kingdom (M.I.).
  8. Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, United Kingdom (M.I.).
  9. The Alan Turing Institute, London, United Kingdom (M.I.).

PMID: 34399584 PMCID: PMC7611731 DOI: 10.1161/STROKEAHA.120.032619

Abstract

Early prediction of risk of cardiovascular disease (CVD), including stroke, is a cornerstone of disease prevention. Clinical risk scores have been widely used for predicting CVD risk from known risk factors. Most CVDs have a substantial genetic component, which also has been confirmed for stroke in recent gene discovery efforts. However, the role of genetics in prediction of risk of CVD, including stroke, has been limited to testing for highly penetrant monogenic disorders. In contrast, the importance of polygenic variation, the aggregated effect of many common genetic variants across the genome with individually small effects, has become more apparent in the last 5 to 10 years, and powerful polygenic risk scores for CVD have been developed. Here we review the current state of the field of polygenic risk scores for CVD including stroke, and their potential to improve CVD risk prediction. We present findings and lessons from diseases such as coronary artery disease as these will likely be useful to inform future research in stroke polygenic risk prediction.

Keywords: cardiovascular disease; genetics; myocardial infarction; risk assessment; stroke

References

  1. Lancet. 2015 Jun 6;385(9984):2264-2271 - PubMed
  2. Stroke. 2020 Jan;51(1):12-20 - PubMed
  3. J Am Coll Cardiol. 2020 Aug 11;76(6):703-714 - PubMed
  4. Nat Rev Genet. 2017 Jun;18(6):331-344 - PubMed
  5. Nature. 2021 Mar;591(7849):211-219 - PubMed
  6. Nat Genet. 2017 Sep;49(9):1385-1391 - PubMed
  7. PLoS Genet. 2010 Feb 26;6(2):e1000864 - PubMed
  8. Stroke. 2014 Feb;45(2):394-402 - PubMed
  9. Circ Genom Precis Med. 2019 Jun;12(6):e002481 - PubMed
  10. Nat Genet. 2018 Apr;50(4):524-537 - PubMed
  11. J Am Coll Cardiol. 2016 Jun 7;67(22):2578-89 - PubMed
  12. Nat Genet. 2021 Apr;53(4):420-425 - PubMed
  13. Nat Genet. 2018 Sep;50(9):1318-1326 - PubMed
  14. Circulation. 2017 Apr 4;135(14):1311-1320 - PubMed
  15. Nat Genet. 2019 Jan;51(1):51-62 - PubMed
  16. BMJ. 2017 May 23;357:j2099 - PubMed
  17. Eur Heart J. 2016 Aug 1;37(29):2315-2381 - PubMed
  18. J Clin Neurol. 2010 Mar;6(1):1-9 - PubMed
  19. Lancet. 2020 Mar 7;395(10226):795-808 - PubMed
  20. Nat Med. 2020 Apr;26(4):549-557 - PubMed
  21. Am J Hum Genet. 2020 May 7;106(5):707-716 - PubMed
  22. Nat Genet. 2017 Mar;49(3):403-415 - PubMed
  23. Circulation. 2014 Jun 24;129(25 Suppl 2):S49-73 - PubMed
  24. Stroke. 2014 Dec;45(12):3754-832 - PubMed
  25. Stroke. 1991 Mar;22(3):312-8 - PubMed
  26. Arterioscler Thromb Vasc Biol. 2020 Nov;40(11):2738-2746 - PubMed
  27. PLoS Med. 2021 Jan 14;18(1):e1003498 - PubMed
  28. Stroke. 2014 Oct;45(10):2856-2862 - PubMed
  29. BMJ. 2018 Oct 24;363:k4168 - PubMed
  30. Am J Hum Genet. 2017 Apr 6;100(4):635-649 - PubMed
  31. Nat Genet. 2019 Apr;51(4):584-591 - PubMed
  32. Stroke. 1994 Jan;25(1):40-3 - PubMed
  33. Ann Neurol. 2017 Mar;81(3):383-394 - PubMed
  34. Brain. 2019 Oct 1;142(10):3176-3189 - PubMed
  35. Nature. 2019 Jun;570(7762):514-518 - PubMed
  36. Nat Genet. 2015 Oct;47(10):1121-1130 - PubMed
  37. Nature. 2018 Oct;562(7726):203-209 - PubMed
  38. J Am Coll Cardiol. 2018 Oct 16;72(16):1883-1893 - PubMed
  39. Circ Res. 2018 Feb 2;122(3):433-443 - PubMed
  40. Circ Res. 2016 Feb 19;118(4):564-78 - PubMed
  41. Nat Genet. 2017 Jan;49(1):54-64 - PubMed
  42. Sci Rep. 2016 Oct 12;6:35278 - PubMed
  43. Nat Genet. 2018 Oct;50(10):1412-1425 - PubMed
  44. Eur Heart J. 2016 Feb 7;37(6):561-7 - PubMed
  45. Nat Genet. 2018 Sep;50(9):1219-1224 - PubMed
  46. Nat Genet. 2018 Feb;50(2):229-237 - PubMed
  47. Am J Hum Genet. 2015 Oct 1;97(4):576-92 - PubMed
  48. Nat Commun. 2019 Dec 20;10(1):5819 - PubMed
  49. Stroke. 2020 Mar;51(3):759-765 - PubMed
  50. PLoS Med. 2015 Mar 31;12(3):e1001779 - PubMed
  51. BMC Cancer. 2017 Jul 18;17(1):491 - PubMed
  52. Nat Genet. 2017 Mar;49(3):325-331 - PubMed
  53. PLoS One. 2019 Jan 15;14(1):e0210010 - PubMed
  54. J Neurol. 2015 Dec;262(12):2601-16 - PubMed
  55. Nat Commun. 2020 Aug 20;11(1):3635 - PubMed
  56. Nat Med. 2020 Apr;26(4):542-548 - PubMed
  57. Nat Genet. 2020 Dec;52(12):1303-1313 - PubMed
  58. Circulation. 2015 Feb 3;131(5):451-8 - PubMed
  59. Circulation. 2021 Feb 2;143(5):470-478 - PubMed
  60. Circulation. 2018 Mar 6;137(10):1027-1038 - PubMed
  61. Eur Heart J. 2016 Nov 14;37(43):3267-3278 - PubMed
  62. Circ Genom Precis Med. 2019 Jul;12(7):e002338 - PubMed
  63. Circulation. 2019 Mar 26;139(13):1603-1611 - PubMed
  64. Arterioscler Thromb Vasc Biol. 2013 Sep;33(9):2261-6 - PubMed

Publication Types

Grant support