Display options
Share it on

Int J Radiat Oncol Biol Phys. 2021 Dec 01;111(5):1250-1261. doi: 10.1016/j.ijrobp.2021.08.004. Epub 2021 Aug 14.

Irradiation at Ultra-High (FLASH) Dose Rates Reduces Acute Normal Tissue Toxicity in the Mouse Gastrointestinal System.

International journal of radiation oncology, biology, physics

Jia-Ling Ruan, Carl Lee, Shari Wouters, Iain D C Tullis, Mieke Verslegers, Mohamed Mysara, Chee Kin Then, Sean C Smart, Mark A Hill, Ruth J Muschel, Amato J Giaccia, Borivoj Vojnovic, Anne E Kiltie, Kristoffer Petersson

Affiliations

  1. MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, United Kingdom.
  2. Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, United Kingdom.
  3. Interdisciplinary Biosciences Group, Belgian Nuclear Research Center (SCK CEN), Mol, Belgium; Molecular Pathology Group, Cell Biology and Histology and Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, Campus Drie Eiken, University of Antwerp, Antwerp, Belgium.
  4. Interdisciplinary Biosciences Group, Belgian Nuclear Research Center (SCK CEN), Mol, Belgium.
  5. MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, United Kingdom; Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden. Electronic address: [email protected].

PMID: 34400268 PMCID: PMC7612009 DOI: 10.1016/j.ijrobp.2021.08.004

Abstract

PURPOSE: Preclinical studies using ultra-high dose rate (FLASH) irradiation have demonstrated reduced normal tissue toxicity compared with conventional dose rate (CONV) irradiation, although this finding is not universal. We investigated the effect of temporal pulse structure and average dose rate of FLASH compared with CONV irradiation on acute intestinal toxicity.

MATERIALS AND METHODS: Whole abdomens of C3H mice were irradiated with a single fraction to various doses, using a 6 MeV electron linear accelerator with single pulse FLASH (dose rate = 2-6 × 10

RESULTS: We found statistically significant improvements in crypt survival for mice irradiated with FLASH at doses between 7.5 and 12.5 Gy, with a dose modifying factor of 1.1 for FLASH (7.5 Gy, P < .01; 10 Gy, P < .05; 12.5 Gy, P < .01). This sparing effect was lost when the delivery time was increased, either by increasing the number of irradiation pulses or by prolonging the time between 2 successive pulses. Sparing was observed for average dose rates of ≥280 Gy/s. Fecal microbiome analysis showed that FLASH irradiation caused fewer changes to the microbiota than CONV irradiation.

CONCLUSIONS: This study demonstrates that FLASH irradiation can spare mouse small intestinal crypts and reduce changes in gut microbiome composition compared with CONV irradiation. The higher the average dose rate, the larger the FLASH effect, which is also influenced by temporal pulse structure of the delivery.

Copyright © 2021 Elsevier Inc. All rights reserved.

References

  1. Front Oncol. 2021 May 13;11:658004 - PubMed
  2. Sci Transl Med. 2014 Jul 16;6(245):245ra93 - PubMed
  3. Int J Radiat Biol Relat Stud Phys Chem Med. 1974 Sep;26(3):259-67 - PubMed
  4. Int J Radiat Biol Relat Stud Phys Chem Med. 1970;17(3):261-7 - PubMed
  5. Front Cell Infect Microbiol. 2020 Oct 21;10:541178 - PubMed
  6. Oncogene. 2016 Jun 30;35(26):3365-75 - PubMed
  7. Gigascience. 2017 Feb 1;6(2):1-10 - PubMed
  8. PLoS One. 2013 Dec 18;8(12):e82659 - PubMed
  9. Stem Cell Reports. 2020 Aug 11;15(2):374-388 - PubMed
  10. Am J Gastroenterol. 2008 Jul;103(7):1754-61 - PubMed
  11. Radiother Oncol. 2021 Mar;156:1-9 - PubMed
  12. Radiother Oncol. 2019 Oct;139:11-17 - PubMed
  13. Front Oncol. 2020 Jan 17;9:1563 - PubMed
  14. Radiother Oncol. 2018 Dec;129(3):582-588 - PubMed
  15. Bioinformatics. 2014 Nov 1;30(21):3123-4 - PubMed
  16. Cancers (Basel). 2019 Jun 20;11(6): - PubMed
  17. Clin Oncol (R Coll Radiol). 2019 Jul;31(7):407-415 - PubMed
  18. Nat Rev Gastroenterol Hepatol. 2014 Aug;11(8):470-9 - PubMed
  19. Science. 2018 Jan 5;359(6371):104-108 - PubMed
  20. Clin Cancer Res. 2019 Nov 1;25(21):6487-6500 - PubMed
  21. Science. 2018 Jan 5;359(6371):97-103 - PubMed
  22. Radiat Res. 1982 Oct;92(1):172-81 - PubMed
  23. Radiat Res. 2020 Dec 1;194(6):656-664 - PubMed
  24. J Cell Mol Med. 2019 May;23(5):3747-3756 - PubMed
  25. Sci Rep. 2020 Dec 10;10(1):21600 - PubMed
  26. Genome Biol. 2011 Jun 24;12(6):R60 - PubMed
  27. Int J Radiat Biol Relat Stud Phys Chem Med. 1980 Aug;38(2):139-45 - PubMed
  28. Aliment Pharmacol Ther. 2014 Sep;40(5):409-21 - PubMed
  29. Sci Rep. 2019 Nov 20;9(1):17180 - PubMed
  30. Nat Biotechnol. 2013 Sep;31(9):814-21 - PubMed
  31. Int J Radiat Oncol Biol Phys. 2020 Feb 1;106(2):440-448 - PubMed
  32. Gut. 2018 Jan;67(1):97-107 - PubMed
  33. Radiother Oncol. 2019 Oct;139:46-50 - PubMed
  34. Gut Microbes. 2020 Jul 3;11(4):789-806 - PubMed
  35. Anesth Analg. 2019 Oct;129(4):e126-e129 - PubMed
  36. Sci Rep. 2018 Aug 13;8(1):12044 - PubMed
  37. Science. 2013 Nov 22;342(6161):967-70 - PubMed
  38. Radiother Oncol. 2021 May;158:7-12 - PubMed

Publication Types

Grant support