Display options
Share it on

Sci Adv. 2021 Aug 06;7(32). doi: 10.1126/sciadv.abf6580. Print 2021 Aug.

Longitudinal tracking of neuronal mitochondria delineates PINK1/Parkin-dependent mechanisms of mitochondrial recycling and degradation.

Science advances

Huihui Li, Zak Doric, Amandine Berthet, Danielle M Jorgens, Mai K Nguyen, Ivy Hsieh, Julia Margulis, Rebecca Fang, Jayanta Debnath, Hiromi Sesaki, Steve Finkbeiner, Eric Huang, Ken Nakamura

Affiliations

  1. Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA.
  2. Graduate Program in Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA.
  3. Electron Microscope Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA.
  4. Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA.
  5. Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA 94143, USA.
  6. Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
  7. Center for Systems and Therapeutics, Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA.
  8. Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
  9. Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA.
  10. Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA. [email protected].

PMID: 34362731 PMCID: PMC8346224 DOI: 10.1126/sciadv.abf6580

Abstract

Altered mitochondrial quality control and dynamics may contribute to neurodegenerative diseases, including Parkinson's disease, but we understand little about these processes in neurons. We combined time-lapse microscopy and correlative light and electron microscopy to track individual mitochondria in neurons lacking the fission-promoting protein dynamin-related protein 1 (Drp1) and delineate the kinetics of PINK1-dependent pathways of mitochondrial quality control. Depolarized mitochondria recruit Parkin to the outer mitochondrial membrane, triggering autophagosome formation, rapid lysosomal fusion, and Parkin redistribution. Unexpectedly, these mitolysosomes are dynamic and persist for hours. Some are engulfed by healthy mitochondria, and others are deacidified before bursting. In other cases, Parkin is directly recruited to the matrix of polarized mitochondria. Loss of PINK1 blocks Parkin recruitment, causes LC3 accumulation within mitochondria, and exacerbates Drp1KO toxicity to dopamine neurons. These results define a distinct neuronal mitochondrial life cycle, revealing potential mechanisms of mitochondrial recycling and signaling relevant to neurodegeneration.

Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

References

  1. Proc Natl Acad Sci U S A. 2005 Mar 8;102(10):3840-5 - PubMed
  2. Sci Rep. 2016 Aug 10;6:30610 - PubMed
  3. J Cell Biol. 2009 Sep 21;186(6):805-16 - PubMed
  4. Nature. 2018 Feb 15;554(7692):382-386 - PubMed
  5. Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6400-5 - PubMed
  6. Front Neurol. 2013 Jul 19;4:100 - PubMed
  7. Genesis. 2006 Aug;44(8):383-90 - PubMed
  8. Hum Mol Genet. 2012 Nov 15;21(22):4817-26 - PubMed
  9. Hum Mol Genet. 2012 Mar 1;21(5):991-1003 - PubMed
  10. Nat Commun. 2019 Jun 12;10(1):2576 - PubMed
  11. J Biol Chem. 2013 Feb 22;288(8):5660-72 - PubMed
  12. J Mol Biol. 2015 Mar 27;427(6 Pt A):1176-90 - PubMed
  13. Cell Death Dis. 2015 Apr 16;6:e1725 - PubMed
  14. Autophagy. 2010 Aug;6(6):764-76 - PubMed
  15. Nature. 2015 Apr 23;520(7548):553-7 - PubMed
  16. Hum Mol Genet. 2006 Mar 15;15(6):883-95 - PubMed
  17. EMBO J. 2008 Jan 23;27(2):433-46 - PubMed
  18. J Biol Chem. 2008 Oct 24;283(43):29292-300 - PubMed
  19. J Biol Chem. 2011 Jun 3;286(22):19630-40 - PubMed
  20. Neuron. 2015 Jul 15;87(2):371-81 - PubMed
  21. Nature. 2018 Sep;561(7722):258-262 - PubMed
  22. Nat Commun. 2014 Apr 01;5:3550 - PubMed
  23. PLoS One. 2009 Jun 03;4(6):e5777 - PubMed
  24. J Biol Chem. 2009 Aug 21;284(34):22938-51 - PubMed
  25. Cell. 2011 Mar 4;144(5):689-702 - PubMed
  26. Autophagy. 2019 Sep;15(9):1592-1605 - PubMed
  27. Dev Cell. 2017 Mar 27;40(6):583-594.e6 - PubMed
  28. Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1638-43 - PubMed
  29. J Cell Biol. 2000 Oct 16;151(2):277-88 - PubMed
  30. J Cell Sci. 2011 Jul 15;124(Pt 14):2349-56 - PubMed
  31. Autophagy. 2013 Nov 1;9(11):1750-7 - PubMed
  32. PLoS One. 2011 Jan 17;6(1):e16054 - PubMed
  33. J Cell Biol. 2017 Oct 2;216(10):3231-3247 - PubMed
  34. Curr Biol. 2012 Mar 20;22(6):545-52 - PubMed
  35. Nat Med. 2016 Jan;22(1):54-63 - PubMed
  36. J Biol Chem. 2011 Jun 10;286(23):20710-26 - PubMed
  37. Nat Neurosci. 2013 Sep;16(9):1257-65 - PubMed
  38. J Cell Biol. 2012 May 14;197(4):535-51 - PubMed
  39. FEBS Lett. 1989 Apr 24;247(2):330-2 - PubMed
  40. Cell. 2014 Dec 18;159(7):1563-77 - PubMed
  41. Nat Chem Biol. 2014 Aug;10(8):677-85 - PubMed
  42. Cell Metab. 2015 Feb 3;21(2):273-286 - PubMed
  43. EMBO Rep. 2007 Oct;8(10):939-44 - PubMed
  44. Nature. 2006 Jun 29;441(7097):1162-6 - PubMed
  45. Nature. 2006 Jun 15;441(7095):885-9 - PubMed
  46. EMBO J. 2014 Dec 1;33(23):2798-813 - PubMed
  47. Autophagy. 2019 Sep;15(9):1572-1591 - PubMed
  48. Chem Biol. 2008 Oct 20;15(10):1116-24 - PubMed
  49. J Cell Biol. 2016 Mar 14;212(6):677-92 - PubMed
  50. Sci Rep. 2012;2:379 - PubMed
  51. Autophagy. 2016;12(4):619-31 - PubMed
  52. Elife. 2020 Jan 14;9: - PubMed
  53. Autophagy. 2007 Sep-Oct;3(5):452-60 - PubMed
  54. PLoS Biol. 2010 Jan 26;8(1):e1000298 - PubMed
  55. J Cell Biol. 2016 Dec 5;215(5):649-665 - PubMed
  56. Hum Mol Genet. 2015 Feb 15;24(4):1061-76 - PubMed
  57. Nat Commun. 2015 May 11;6:7007 - PubMed
  58. Dev Cell. 2019 Aug 5;50(3):339-354.e4 - PubMed
  59. J Neurosci. 2015 Jan 21;35(3):890-905 - PubMed
  60. Curr Biol. 2017 Nov 6;27(21):R1177-R1192 - PubMed
  61. Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11441-6 - PubMed
  62. Nat Rev Immunol. 2017 Jun;17(6):363-375 - PubMed
  63. Hum Mol Genet. 2015 Nov 15;24(22):6314-30 - PubMed
  64. Nat Commun. 2014 Nov 05;5:5244 - PubMed
  65. Trends Cell Biol. 2013 Feb;23(2):64-71 - PubMed
  66. Cell Metab. 2014 Mar 4;19(3):357-72 - PubMed
  67. J Biol Chem. 2009 May 15;284(20):13843-13855 - PubMed
  68. Sci Adv. 2020 Nov 11;6(46): - PubMed
  69. Chem Biol. 2011 Aug 26;18(8):1042-52 - PubMed
  70. Int J Mol Sci. 2017 Aug 28;18(9): - PubMed
  71. J Cell Biol. 2010 Dec 27;191(7):1367-80 - PubMed
  72. Nature. 2015 Aug 20;524(7565):309-314 - PubMed
  73. Proc Natl Acad Sci U S A. 2008 May 13;105(19):7070-5 - PubMed
  74. J Neurosci. 2014 Oct 22;34(43):14304-17 - PubMed
  75. Biophys J. 2010 Jul 21;99(2):L13-5 - PubMed
  76. Circ Res. 2015 Jan 16;116(2):264-78 - PubMed
  77. Annu Rev Biochem. 1986;55:663-700 - PubMed
  78. Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):378-83 - PubMed
  79. Hum Mol Genet. 2011 Mar 1;20(5):927-40 - PubMed
  80. J Biol Chem. 2011 Apr 1;286(13):11672-84 - PubMed
  81. Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15651-6 - PubMed
  82. Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):5018-23 - PubMed
  83. Nature. 2010 Mar 4;464(7285):104-7 - PubMed
  84. EMBO Rep. 2013 Dec;14(12):1127-35 - PubMed

Publication Types

Grant support