Display options
Share it on

Toxicol Appl Pharmacol. 2021 Nov 01;430:115713. doi: 10.1016/j.taap.2021.115713. Epub 2021 Sep 04.

Genomics and metabolomics of early-stage thioacetamide-induced liver injury: An interspecies study between guinea pig and rat.

Toxicology and applied pharmacology

Patric Schyman, Richard L Printz, Venkat R Pannala, Mohamed Diwan M AbdulHameed, Shanea K Estes, Chiyo Shiota, Kelli Lynn Boyd, Masakazu Shiota, Anders Wallqvist

Affiliations

  1. Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA.
  2. Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
  3. Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA. Electronic address: [email protected].
  4. Department of Pathology, Microbiology and Immunology, Division of Comparative Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.
  5. Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA. Electronic address: [email protected].
  6. Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA. Electronic address: [email protected].

PMID: 34492290 PMCID: PMC8511347 DOI: 10.1016/j.taap.2021.115713

Abstract

To study the complex processes involved in liver injuries, researchers rely on animal investigations, using chemically or surgically induced liver injuries, to extrapolate findings and infer human health risks. However, this presents obvious challenges in performing a detailed comparison and validation between the highly controlled animal models and development of liver injuries in humans. Furthermore, it is not clear whether there are species-dependent and -independent molecular initiating events or processes that cause liver injury before they eventually lead to end-stage liver disease. Here, we present a side-by-side study of rats and guinea pigs using thioacetamide to examine the similarities between early molecular initiating events during an acute-phase liver injury. We exposed Sprague Dawley rats and Hartley guinea pigs to a single dose of 25 or 100 mg/kg thioacetamide and collected blood plasma for metabolomic analysis and liver tissue for RNA-sequencing. The subsequent toxicogenomic analysis identified consistent liver injury trends in both genomic and metabolomic data within 24 and 33 h after thioacetamide exposure in rats and guinea pigs, respectively. In particular, we found species similarities in the key injury phenotypes of inflammation and fibrogenesis in our gene module analysis for liver injury phenotypes. We identified expression of several common genes (e.g., SPP1, TNSF18, SERPINE1, CLDN4, TIMP1, CD44, and LGALS3), activation of injury-specific KEGG pathways, and alteration of plasma metabolites involved in amino acid and bile acid metabolism as some of the key molecular processes that changed early upon thioacetamide exposure and could play a major role in the initiation of acute liver injury.

Copyright © 2021 Elsevier Inc. All rights reserved.

Keywords: Biomarkers; Gene expression; Interspecies translation; Liver injury; Metabolomics

References

  1. J Gastroenterol Hepatol. 2012 Mar;27 Suppl 2:75-9 - PubMed
  2. J Clin Invest. 1994 Mar;93(3):1326-31 - PubMed
  3. J Physiol. 2018 Dec;596(23):5535-5569 - PubMed
  4. BMC Bioinformatics. 2017 Oct 13;18(1):453 - PubMed
  5. Sci Rep. 2016 Sep 16;6:33453 - PubMed
  6. Acta Pharmacol Toxicol (Copenh). 1984 Aug;55(2):126-32 - PubMed
  7. Trends Immunol. 2017 Jun;38(6):407-422 - PubMed
  8. Int J Mol Sci. 2020 Jun 04;21(11): - PubMed
  9. Expert Opin Drug Metab Toxicol. 2006 Dec;2(6):875-94 - PubMed
  10. BMC Genomics. 2016 Oct 10;17(1):790 - PubMed
  11. Toxicology. 2020 Sep;442:152530 - PubMed
  12. World J Gastroenterol. 2016 Mar 28;22(12):3441-50 - PubMed
  13. J Natl Cancer Inst. 1976 Sep;57(3):591-8 - PubMed
  14. Nat Methods. 2017 Jul;14(7):687-690 - PubMed
  15. Int J Exp Pathol. 2008 Aug;89(4):223-31 - PubMed
  16. Physiol Res. 2014;63(4):491-503 - PubMed
  17. Sci Rep. 2018 Aug 3;8(1):11678 - PubMed
  18. Sci Rep. 2017 Apr 6;7(1):714 - PubMed
  19. Gastroenterology. 2012 Sep;143(3):765-776.e3 - PubMed
  20. J Nutr Sci Vitaminol (Tokyo). 2003 Oct;49(5):315-9 - PubMed
  21. J Biol Chem. 2011 May 6;286(18):16374-85 - PubMed
  22. Oncogene. 2008 Oct 27;27(50):6407-18 - PubMed
  23. J Hepatol. 2019 Jul;71(1):200-211 - PubMed
  24. Nat Biotechnol. 2016 May;34(5):525-7 - PubMed
  25. Science. 1973 Dec 21;182(4118):1271-2 - PubMed
  26. Protein Cell. 2011 Mar;2(3):189-201 - PubMed
  27. Nat Cell Biol. 2010 Jul;12(7):676-85 - PubMed
  28. J Clin Transl Hepatol. 2018 Sep 28;6(3):317-325 - PubMed
  29. Liver Res. 2019 May 21;3(2):88-98 - PubMed
  30. J Hepatol. 2017 Aug;67(2):328-338 - PubMed
  31. Int J Mol Sci. 2020 Nov 04;21(21): - PubMed
  32. Biochim Biophys Acta. 1993 Jun 25;1173(3):283-8 - PubMed
  33. J Pharmacobiodyn. 1983 Dec;6(12):941-9 - PubMed
  34. Neurosci Lett. 2008 Aug 15;441(1):129-33 - PubMed
  35. Indian J Exp Biol. 1999 Apr;37(4):409-10 - PubMed
  36. Mol Cell Biochem. 2009 May;325(1-2):131-9 - PubMed
  37. Med Mol Morphol. 2015 Mar;48(1):33-43 - PubMed
  38. Toxicol Appl Pharmacol. 2019 Jun 1;372:19-32 - PubMed
  39. Toxicol Lett. 1983 Dec;19(3):299-307 - PubMed
  40. Cancer Metastasis Rev. 2010 Jun;29(2):295-307 - PubMed
  41. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 - PubMed
  42. Comp Biochem Physiol B Biochem Mol Biol. 1995 Aug;111(4):523-31 - PubMed
  43. J Neurol Neurosurg Psychiatry. 2016 Mar;87(3):295-301 - PubMed
  44. J Dev Biol. 2019 May 24;7(2): - PubMed
  45. Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):5060-5 - PubMed
  46. Chem Res Toxicol. 2012 Sep 17;25(9):1955-63 - PubMed
  47. Expert Opin Drug Metab Toxicol. 2012 Apr;8(4):487-503 - PubMed
  48. Thromb Haemost. 2003 Dec;90(6):986-92 - PubMed
  49. Nucleic Acids Res. 2018 Jan 4;46(D1):D754-D761 - PubMed
  50. Front Pharmacol. 2018 Nov 06;9:1272 - PubMed
  51. Future Sci OA. 2017 Oct 05;4(1):FSO250 - PubMed
  52. Nutr Metab (Lond). 2006 Jun 21;3:24 - PubMed
  53. J Virol. 2015 Jul;89(13):6805-16 - PubMed
  54. Front Microbiol. 2018 Oct 31;9:2593 - PubMed
  55. Cytokine Growth Factor Rev. 2008 Oct-Dec;19(5-6):333-45 - PubMed
  56. J Cell Physiol. 2012 Feb;227(2):493-507 - PubMed
  57. J Appl Toxicol. 2016 Sep;36(9):1137-49 - PubMed
  58. J Crohns Colitis. 2019 Sep 19;13(9):1186-1200 - PubMed
  59. Front Genet. 2019 Nov 26;10:1233 - PubMed
  60. J Pharmacol Exp Ther. 2014 Aug;350(2):313-21 - PubMed
  61. Toxicology. 2020 Aug;441:152493 - PubMed
  62. J Cheminform. 2010 Oct 18;2(1):9 - PubMed
  63. Hepatol Commun. 2020 Mar 19;4(4):555-568 - PubMed
  64. Biol Trace Elem Res. 2015 Feb;163(1-2):169-76 - PubMed
  65. Drug Metab Dispos. 2020 Jun;48(6):499-507 - PubMed
  66. Free Radic Biol Med. 1997;22(6):1047-54 - PubMed
  67. Hepatology. 2015 Jan;61(1):260-7 - PubMed

Publication Types

Grant support