Display options
Share it on

Biomedicines. 2021 Aug 18;9(8). doi: 10.3390/biomedicines9081039.

GRP78 Overexpression Triggers PINK1-IP.

Biomedicines

Tatiana Leiva-Rodríguez, David Romeo-Guitart, Mireia Herrando-Grabulosa, Pau Muñoz-Guardiola, Miriam Polo, Celia Bañuls, Valerie Petegnief, Assumpció Bosch, Jose Miguel Lizcano, Nadezda Apostolova, Joaquim Forés, Caty Casas

Affiliations

  1. Department of Cell Biology, Physiology and Immunology, Institut de Neurociències (INc), Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain.
  2. Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 08193 Barcelona, Spain.
  3. Laboratory Hormonal Regulation of Brain Development and Functions-Team 8, Institut Necker Enfants-Malades (INEM), INSERM U1151, Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France.
  4. Department of Biochemistry and Molecular Biology, Institut de Neurociències (INc), Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain.
  5. Service of Endocrinology University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46010 Valencia, Spain.
  6. Department of Brain Ischemia and Neurodegeneration, Institute for Biomedical Research of Barcelona (IIBB), Spanish Research Council (CSIC), Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), 08036 Barcelona, Spain.
  7. CIBERehd, Department de Farmacologia, Facultat de Medicina, Universitat de Valencia, 46010 Valencia, Spain.
  8. Hand and Peripheral Nerve Unit, Hospital Clínic i Provincial, Universitat de Barcelona, 08007 Barcelona, Spain.

PMID: 34440243 PMCID: PMC8391647 DOI: 10.3390/biomedicines9081039

Abstract

An experimental model of spinal root avulsion (RA) is useful to study causal molecular programs that drive retrograde neurodegeneration after neuron-target disconnection. This neurodegenerative process shares common characteristics with neuronal disease-related processes such as the presence of endoplasmic reticulum (ER) stress and autophagy flux blockage. We previously found that the overexpression of GRP78 promoted motoneuronal neuroprotection after RA. After that, we aimed to unravel the underlying mechanism by carrying out a comparative unbiased proteomic analysis and pharmacological and genetic interventions. Unexpectedly, mitochondrial factors turned out to be most altered when GRP78 was overexpressed, and the abundance of engulfed mitochondria, a hallmark of mitophagy, was also observed by electronic microscopy in RA-injured motoneurons after GRP78 overexpression. In addition, GRP78 overexpression increased LC3-mitochondria tagging, promoted PINK1 translocation, mitophagy induction, and recovered mitochondrial function in ER-stressed cells. Lastly, we found that GRP78-promoted pro-survival mitophagy was mediated by PINK1 and IP3R in our in vitro model of motoneuronal death. This data indicates a novel relationship between the GRP78 chaperone and mitophagy, opening novel therapeutical options for drug design to achieve neuroprotection.

Keywords: GRP78/BiP; mitophagy; motoneurons; neurodegeneration; neuroprotection

References

  1. J Cell Sci. 2011 Jul 1;124(Pt 13):2143-52 - PubMed
  2. Neuroscience. 2009 Aug 4;162(1):31-8 - PubMed
  3. Biochem J. 2011 Mar 1;434(2):181-8 - PubMed
  4. Nucleic Acids Res. 2009 Jan;37(1):1-13 - PubMed
  5. Mol Cell. 2014 Nov 6;56(3):360-375 - PubMed
  6. Autophagy. 2012 Dec;8(12):1827-9 - PubMed
  7. Nat Med. 2011 Mar;17(3):377-82 - PubMed
  8. Exp Cell Res. 2014 Oct 1;327(2):340-52 - PubMed
  9. Mol Ther Methods Clin Dev. 2014 Jan 15;1:7 - PubMed
  10. Sci Rep. 2018 Sep 5;8(1):13252 - PubMed
  11. Trends Cell Biol. 2018 Nov;28(11):882-895 - PubMed
  12. Mitochondrion. 2011 Mar;11(2):279-86 - PubMed
  13. Cell Death Dis. 2017 Sep 21;8(9):e3056 - PubMed
  14. Cell Death Differ. 2017 Sep;24(9):1518-1529 - PubMed
  15. Mol Cell Biochem. 1997 Sep;174(1-2):167-72 - PubMed
  16. Nat Protoc. 2009;4(1):44-57 - PubMed
  17. J Biol Chem. 2003 Jun 6;278(23):20915-24 - PubMed
  18. Neurosignals. 2012;20(4):265-80 - PubMed
  19. Neural Regen Res. 2019 Jul;14(7):1122-1128 - PubMed
  20. J Comp Pathol. 2011 Feb-Apr;144(2-3):91-102 - PubMed
  21. Neuromolecular Med. 2014 Jun;16(2):217-30 - PubMed
  22. Mol Cell Biol. 1996 Aug;16(8):4273-80 - PubMed
  23. Sci Rep. 2015 Mar 18;5:9185 - PubMed
  24. Cell Death Dis. 2019 Feb 12;10(2):132 - PubMed
  25. Nature. 2000 Nov 23;408(6811):488-92 - PubMed
  26. Cell Death Dis. 2018 Feb 7;9(2):194 - PubMed
  27. J Infect Dis. 2014 Nov 1;210(9):1385-95 - PubMed
  28. Autophagy. 2016;12(2):426-8 - PubMed
  29. Front Aging Neurosci. 2018 Nov 05;10:336 - PubMed
  30. Cell Rep. 2018 Mar 13;22(11):2827-2836 - PubMed
  31. Nature. 2016 Jan 21;529(7586):326-35 - PubMed
  32. Cell Signal. 2015 Jun;27(6):1237-45 - PubMed
  33. Autophagy. 2016;12(1):1-222 - PubMed
  34. Cell. 2010 Jul 23;142(2):270-83 - PubMed
  35. J Cell Biol. 2008 Dec 1;183(5):795-803 - PubMed
  36. Trends Cell Biol. 2016 Oct;26(10):733-744 - PubMed
  37. Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):491-6 - PubMed
  38. Nat Cell Biol. 2010 Feb;12(2):119-31 - PubMed
  39. Trends Biochem Sci. 2020 Jan;45(1):58-75 - PubMed
  40. Biochem J. 2006 May 15;396(1):31-9 - PubMed
  41. Nat Cell Biol. 2018 Sep;20(9):1013-1022 - PubMed
  42. Nat Cell Biol. 2015 Jul;17(7):917-29 - PubMed
  43. J Cell Physiol. 2008 Jun;215(3):627-35 - PubMed
  44. Hum Gene Ther Methods. 2015 Feb;26(1):35-42 - PubMed
  45. Sci Rep. 2018 Jan 30;8(1):1879 - PubMed
  46. Neurosci Lett. 2010 Oct 22;484(1):43-6 - PubMed
  47. Sci Rep. 2017 Sep 20;7(1):12028 - PubMed
  48. Hum Mol Genet. 2011 Apr 1;20(7):1438-55 - PubMed
  49. Brain Pathol. 2003 Oct;13(4):473-81 - PubMed
  50. Neurobiol Aging. 2006 Jul;27(7):973-82 - PubMed
  51. Trends Mol Med. 2020 Jan;26(1):8-20 - PubMed
  52. Nat Rev Neurosci. 2014 Jun;15(6):394-409 - PubMed
  53. Cell Death Dis. 2018 May 10;9(5):531 - PubMed
  54. J Neurotrauma. 2009 May;26(5):763-79 - PubMed
  55. Hum Gene Ther. 1999 Sep 20;10(14):2295-305 - PubMed
  56. Cell Res. 2018 Aug;28(8):787-802 - PubMed
  57. EMBO J. 2019 Feb 1;38(3): - PubMed
  58. J Biol Chem. 1993 Jun 5;268(16):12003-9 - PubMed
  59. PLoS Biol. 2014 Sep 09;12(9):e1001945 - PubMed
  60. Cell Stem Cell. 2011 Oct 4;9(4):330-44 - PubMed
  61. Cells. 2021 Feb 10;10(2): - PubMed
  62. Cell. 2007 Nov 2;131(3):596-610 - PubMed
  63. J Biomed Sci. 2018 Nov 30;25(1):87 - PubMed
  64. Cell Calcium. 2018 Mar;70:32-46 - PubMed
  65. Front Neurosci. 2017 Apr 05;11:177 - PubMed
  66. PLoS One. 2014 Nov 18;9(11):e112837 - PubMed
  67. Oncotarget. 2015 Feb 20;6(5):3098-110 - PubMed
  68. Cell Death Differ. 2004 Apr;11(4):381-9 - PubMed
  69. Nature. 2015 Aug 20;524(7565):309-314 - PubMed
  70. Gene Ther. 1999 Jun;6(6):973-85 - PubMed
  71. Biochem Soc Trans. 2014 Dec;42(6):1671-8 - PubMed
  72. Cell Death Differ. 2011 Oct;18(10):1617-27 - PubMed
  73. Theranostics. 2020 Apr 6;10(11):5154-5168 - PubMed
  74. Cell Death Differ. 2008 Feb;15(2):364-75 - PubMed
  75. Int J Mol Sci. 2015 Jun 11;16(6):13356-80 - PubMed
  76. J Neurotrauma. 2011 May;28(5):831-40 - PubMed
  77. Cell Death Dis. 2018 May 24;9(6):626 - PubMed
  78. J Membr Biol. 2017 Aug;250(4):379-392 - PubMed
  79. Nature. 2008 Jul 10;454(7201):232-5 - PubMed

Publication Types

Grant support