Display options
Share it on

J Am Chem Soc. 2021 Sep 15;143(36):14482-14486. doi: 10.1021/jacs.1c07403. Epub 2021 Sep 01.

Prebiotic Photochemical Coproduction of Purine Ribo- and Deoxyribonucleosides.

Journal of the American Chemical Society

Jianfeng Xu, Nicholas J Green, David A Russell, Ziwei Liu, John D Sutherland

Affiliations

  1. MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, U.K.

PMID: 34469129 PMCID: PMC8607323 DOI: 10.1021/jacs.1c07403

Abstract

The hypothesis that life on Earth may have started with a heterogeneous nucleic acid genetic system including both RNA and DNA has attracted broad interest. The recent finding that two RNA subunits (cytidine, C, and uridine, U) and two DNA subunits (deoxyadenosine, dA, and deoxyinosine, dI) can be coproduced in the same reaction network, compatible with a consistent geological scenario, supports this theory. However, a prebiotically plausible synthesis of the missing units (purine ribonucleosides and pyrimidine deoxyribonucleosides) in a unified reaction network remains elusive. Herein, we disclose a strictly stereoselective and furanosyl-selective synthesis of purine ribonucleosides (adenosine, A, and inosine, I) and purine deoxynucleosides (dA and dI), alongside one another, via a key photochemical reaction of thioanhydroadenosine with sulfite in alkaline solution (pH 8-10). Mechanistic studies suggest an unexpected recombination of sulfite and nucleoside alkyl radicals underpins the formation of the ribo C2'-O bond. The coproduction of A, I, dA, and dI from a common intermediate, and under conditions likely to have prevailed in at least some primordial locales, is suggestive of the potential coexistence of RNA and DNA building blocks at the dawn of life.

References

  1. J Am Chem Soc. 2004 Aug 11;126(31):9578-83 - PubMed
  2. Proc Natl Acad Sci U S A. 2018 Dec 26;115(52):13318-13323 - PubMed
  3. Biochemistry. 1968 Jan;7(1):448-55 - PubMed
  4. Astrobiology. 2018 Aug;18(8):1023-1040 - PubMed
  5. Proc Natl Acad Sci U S A. 2020 Jan 14;117(2):883-888 - PubMed
  6. Angew Chem Int Ed Engl. 2006 Sep 18;45(37):6176-9 - PubMed
  7. Orig Life Evol Biosph. 1988;18(1-2):71-85 - PubMed
  8. Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13492-7 - PubMed
  9. Science. 2016 May 13;352(6287):833-6 - PubMed
  10. Proc Natl Acad Sci U S A. 2017 Oct 24;114(43):11315-11320 - PubMed
  11. Nature. 2002 Jul 11;418(6894):214-21 - PubMed
  12. Nat Chem. 2019 May;11(5):457-462 - PubMed
  13. Chem Commun (Camb). 2018 May 29;54(44):5566-5569 - PubMed
  14. Nat Commun. 2018 Oct 4;9(1):4073 - PubMed
  15. Angew Chem Int Ed Engl. 2016 Oct 10;55(42):13204-13209 - PubMed
  16. J Mol Evol. 1972;1(3):249-57 - PubMed
  17. Nat Chem. 2017 Apr;9(4):303-309 - PubMed
  18. Nat Chem. 2019 Nov;11(11):1009-1018 - PubMed
  19. Science. 2019 Oct 4;366(6461):76-82 - PubMed
  20. J Am Chem Soc. 2021 May 19;143(19):7219-7236 - PubMed
  21. Elife. 2017 Sep 26;6: - PubMed
  22. Nature. 2020 Jun;582(7810):60-66 - PubMed

Publication Types

Grant support