Display options
Share it on

Arch Toxicol. 2021 Nov;95(11):3589-3599. doi: 10.1007/s00204-021-03154-5. Epub 2021 Sep 14.

Viper venoms drive the macrophages and hepatocytes to sequester and clear platelets: novel mechanism and therapeutic strategy for venom-induced thrombocytopenia.

Archives of toxicology

Chuanbin Shen, Ming Liu, Daniel Thomas Mackeigan, Zi Yan Chen, Pingguo Chen, Danielle Karakas, June Li, Peter A A Norris, Jiayao Li, Yanling Deng, Chengbo Long, Ren Lai, Heyu Ni

Affiliations

  1. Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A1, Canada.
  2. Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, M5B 1W8, Canada.
  3. Department of Molecular and Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China.
  4. Department of Physiology, University of Toronto, Toronto, ON, M5S 1A1, Canada.
  5. Canadian Blood Services Centre for Innovation, Toronto, ON, M5G 2M1, Canada.
  6. Hospital of Traditional Chinese Medicine of Wuzhou City, Wuzhou, 543002, Guangxi, China.
  7. Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China.
  8. KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
  9. Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China. [email protected].
  10. KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China. [email protected].
  11. Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A1, Canada. [email protected].
  12. Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, M5B 1W8, Canada. [email protected].
  13. Department of Physiology, University of Toronto, Toronto, ON, M5S 1A1, Canada. [email protected].
  14. Canadian Blood Services Centre for Innovation, Toronto, ON, M5G 2M1, Canada. [email protected].
  15. Department of Medicine, University of Toronto, Toronto, ON, M5S 1A1, Canada. [email protected].
  16. Department of Laboratory Medicine and Pathobiology, Department of Medicine and Department of Physiology, University of TorontoCanadian Blood Services Centre for Innovation, St. Michael's Hospital, Room 421, LKSKI - Keenan Research Centre, 209 Victoria Street, Toronto, ON, M5B 1W8, Canada. [email protected].

PMID: 34519865 DOI: 10.1007/s00204-021-03154-5

Abstract

Venomous snakebites cause clinical manifestations that range from local to systemic and are considered a significant global health challenge. Persistent or refractory thrombocytopenia has been frequently reported in snakebite patients, especially in cases caused by viperidae snakes. Viper envenomation-induced thrombocytopenia may persist in the absence of significant consumption coagulopathy even after the antivenom treatment, yet the mechanism remains largely unknown. Our study aims to investigate the mechanism and discover novel therapeutic targets for coagulopathy-independent thrombocytopenia caused by viper envenomation. Here we found that patients bitten by Protobothrops mucrosquamatus and Trimeresurus stejnegeri, rather than Naja. atra may develop antivenom-resistant and coagulopathy-independent thrombocytopenia. Crude venoms and the derived C-type lectin-like proteins from these vipers significantly increased platelet surface expression of neuraminidase and platelet desialylation, therefore led to platelet ingestion by both macrophages and hepatocytes in vitro, and drastically decreased peripheral platelet counts in vivo. Our study is the first to demonstrate that desialylation-mediated platelet clearance is a novel mechanism of viper envenomation-induced refractory thrombocytopenia and C-type lectin-like proteins derived from the viper venoms contribute to snake venom-induced thrombocytopenia. The results of this study suggest the inhibition of platelet desialylation as a novel therapeutic strategy against viper venom-induced refractory thrombocytopenia.

© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Keywords: Hepatocyte; Macrophage; Platelet desialylation; Snake venom; Thrombocytopenia

References

  1. Alirol E, Sharma SK, Bawaskar HS, Kuch U, Chappuis F (2010) Snake bite in South Asia: a review. Plos Negl Trop Dis 4(1):e603. https://doi.org/10.1371/journal.pntd.0000603 - PubMed
  2. Aslam R, Speck ER, Kim M et al (2006) Platelet Toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumor necrosis factor-α production in vivo. Blood 107(2):637–641 - PubMed
  3. Bolt HM (2021) New aspects in snake venom toxicology. Arch Toxicol. https://doi.org/10.1007/s00204-021-03066-4 - PubMed
  4. Chen YW, Chen MH, Chen YC et al (2009) Differences in clinical profiles of patients with Protobothrops mucrosquamatus and Viridovipera stejnegeri envenoming in Taiwan. Am J Trop Med Hyg 80(1):28–32 - PubMed
  5. Chen ZM, Wu JB, Zhang Y et al (2011) A novel platelet glycoprotein Ib-binding protein with human platelet aggregation-inhibiting activity from Trimeresurus jerdonii venom. Toxicon 57(5):672–679. https://doi.org/10.1016/j.toxicon.2011.01.010 - PubMed
  6. Cheng C-L, Mao Y-C, Liu P-Y, Chiang L-C, Liao S-C, Yang C-C (2017) Deinagkistrodon acutus envenomation: a report of three cases. J Venom Anim Toxins Incl Trop Dis 23(1):20 - PubMed
  7. Clemetson KJ (2010) Snaclecs (snake C-type lectins) that inhibit or activate platelets by binding to receptors. Toxicon 56(7):1236–1246. https://doi.org/10.1016/j.toxicon.2010.03.011 - PubMed
  8. de França FS, Gabrili JJM, Mathieu L, Burgher F, Blomet J, Tambourgi DV (2021) Bothrops lanceolatus snake (Fer-de-lance) venom triggers inflammatory mediators’ storm in human blood. Arch Toxicol 95(3):1129–1138 - PubMed
  9. Deppermann C, Kratofil RM, Peiseler M, et al. (2020) Macrophage galactose lectin is critical for Kupffer cells to clear aged platelets. J Exp Med 217(4) - PubMed
  10. Eble JA (2019) Structurally Robust and Functionally Highly Versatile—C-Type Lectin (-Related) Proteins in Snake Venoms. Toxins 11(3):136 - PubMed
  11. Fang Y, He X, Zhang P et al (2019) In Vitro and In Vivo Antimalarial Activity of LZ1, a Peptide Derived from Snake Cathelicidin. Toxins 11(7) doi: https://doi.org/10.3390/toxins11070379 - PubMed
  12. Franchini M, Veneri D, Lippi G (2017) Thrombocytopenia and infections. Expert Rev Hematol 10(1):99–106 - PubMed
  13. Gold BS, Barish RA, Rudman MS (2004) Refractory thrombocytopenia despite treatment for rattlesnake envenomation. N Engl J Med 350(18):1912–1913; discussion 1912–1913. https://doi.org/10.1056/NEJM200404293501824 - PubMed
  14. Grozovsky R, Begonja AJ, Liu K et al (2015) The Ashwell-Morell receptor regulates hepatic thrombopoietin production via JAK2-STAT3 signaling. Nat Med 21(1):47–54 - PubMed
  15. Gutierrez JM, Calvete JJ, Habib AG, Harrison RA, Williams DJ, Warrell DA (2017) Snakebite envenoming. Nat Rev Dis Primers. https://doi.org/10.1038/Nrdp.2017.63 - PubMed
  16. Gutiérrez JM, Albulescu L-O, Clare RH et al (2021) The Search for Natural and Synthetic Inhibitors That Would Complement Antivenoms as Therapeutics for Snakebite Envenoming. Toxins 13(7):451 - PubMed
  17. Heemskerk J, Mattheij N, Cosemans J (2013) Platelet-based coagulation: different populations, different functions. J Thromb Haemost 11(1):2–16 - PubMed
  18. Herrera C, Rucavado A, Warrell DA, Gutiérrez JM (2013) Systemic effects induced by the venom of the snake Bothrops caribbaeus in a murine model. Toxicon 63:19–31 - PubMed
  19. Hoffmeister KM, Felbinger TW, Falet H et al (2003a) The clearance mechanism of chilled blood platelets. Cell 112(1):87–97. https://doi.org/10.1016/s0092-8674(02)01253-9 - PubMed
  20. Hoffmeister KM, Josefsson EC, Isaac NA, Clausen H, Hartwig JH, Stossel TP (2003b) Glycosylation restores survival of chilled blood platelets. Science 301(5639):1531–1534. https://doi.org/10.1126/science.1085322 - PubMed
  21. Isbister GK (2010) Snakebite Doesn’t Cause Disseminated Intravascular Coagulation: Coagulopathy and Thrombotic Microangiopathy in Snake Envenoming. Semin Thromb Hemost 36(4):444–451. https://doi.org/10.1055/s-0030-1254053 - PubMed
  22. Jansen A, Josefsson EC, Rumjantseva V et al (2012) Desialylation accelerates platelet clearance after refrigeration and initiates GPIbα metalloproteinase-mediated cleavage in mice. Blood 119(5):1263–1273 - PubMed
  23. Jiang Y, Li Y, Lee W et al (2011) Venom gland transcriptomes of two elapid snakes (Bungarus multicinctus and Naja atra) and evolution of toxin genes. BMC Genomics 12:1. https://doi.org/10.1186/1471-2164-12-1 - PubMed
  24. Josefsson EC, Gebhard HH, Stossel TP, Hartwig JH, Hoffmeister KM (2005) The macrophage αMβ2 integrin αM lectin domain mediates the phagocytosis of chilled platelets. J Biol Chem 280(18):18025–18032 - PubMed
  25. Karakas D, Xu M, Ni H (2021) GPIbα is the driving force of hepatic thrombopoietin generation. Research and Practice in Thrombosis and Haemostasis 5(4):e12506 - PubMed
  26. Latinovic Z, Leonardi A, Sribar J et al (2016) Venomics of Vipera berus berus to explain differences in pathology elicited by Vipera ammodytes ammodytes envenomation: Therapeutic implications. J Proteomics 146:34–47. https://doi.org/10.1016/j.jprot.2016.06.020 - PubMed
  27. Lavonas EJ, Schaeffer TH, Kokko J, Mlynarchek SL, Bogdan GM (2009) Crotaline Fab antivenom appears to be effective in cases of severe North American pit viper envenomation: an integrative review. BMC Emerg Med 9:13. https://doi.org/10.1186/1471-227X-9-13 - PubMed
  28. Lazarovici M, Lelkes, (2019) From Snake Venom’s Disintegrins and C-Type Lectins to Anti-Platelet Drugs. Toxins 11(5):303 - PubMed
  29. Lei X, Reheman A, Hou Y et al (2014) Anfibatide, a novel GPIb complex antagonist, inhibits platelet adhesion and thrombus formation in vitro and in vivo in murine models of thrombosis. Thromb Haemost 112(02):279–289 - PubMed
  30. Li J, Callum JL, Lin Y, Zhou Y, Zhu G, Ni H (2014) Severe platelet desialylation in a patient with glycoprotein Ib/IX antibody-mediated immune thrombocytopenia and fatal pulmonary hemorrhage. Haematologica 99(4):e61–e63. https://doi.org/10.3324/haematol.2013.102897 - PubMed
  31. Li J, Van Der Wal DE, Zhu G et al (2015) Desialylation is a mechanism of Fc-independent platelet clearance and a therapeutic target in immune thrombocytopenia. Nat Commun 6:7737 - PubMed
  32. Li M-f, Li X-l, Fan K-l et al (2017) Platelet desialylation is a novel mechanism and a therapeutic target in thrombocytopenia during sepsis: an open-label, multicenter, randomized controlled trial. J Hematol Oncol 10(1):1–10 - PubMed
  33. Li J, Sullivan JA, Ni H (2018) Pathophysiology of immune thrombocytopenia. Curr Opin Hematol 25(5):373–381 - PubMed
  34. Li C, Li J, Ni H (2020) Crosstalk Between Platelets and Microbial Pathogens. Frontiers in Immunology 11 - PubMed
  35. Li BX, Dai X, Xu XR et al (2021) In vitro assessment and phase I randomized clinical trial of anfibatide a snake venom derived anti-thrombotic agent targeting human platelet GPIbα. Sci Rep 11(1):1–17 - PubMed
  36. Lin C-C, Chen Y-C, Goh ZNL et al (2020) Wound infections of snakebites from the venomous Protobothrops mucrosquamatus and Viridovipera stejnegeri in taiwan: Bacteriology, antibiotic susceptibility, and predicting the need for antibiotics—A bite study. Toxins 12(9):575 - PubMed
  37. Liu C-C, Lin C-C, Hsiao Y-C, Wang P-J, Yu J-S (2018) Proteomic characterization of six Taiwanese snake venoms: Identification of species-specific proteins and development of a SISCAPA-MRM assay for cobra venom factors. J Proteomics 187:59–68 - PubMed
  38. Long C, Liu M, Tian H, et al. (2020) Potential Role of Platelet-Activating C-Type Lectin-Like Proteins in Viper Envenomation Induced Thrombotic Microangiopathy Symptom. Toxins (Basel) 12(12) doi: https://doi.org/10.3390/toxins12120749 - PubMed
  39. Mackeigan DT, Ni T, Shen C, Stratton TW, Ni H (2020) Updated Understanding of Platelets in Thrombosis and Hemostasis: The Roles of Integrin PSI Domains and their Potential as Therapeutic Targets. - PubMed
  40. Maduwage K, Isbister GK (2014) Current Treatment for Venom-Induced Consumption Coagulopathy Resulting from Snakebite. Plos Neglected Tropical Diseases 8(10) doi:ARTN e322010.1371/journal.pntd.0003220 - PubMed
  41. McKenzie CG, Guo L, Freedman J, Semple JW (2013) Cellular immune dysfunction in immune thrombocytopenia (ITP). Br J Haematol 163(1):10–23 - PubMed
  42. Monzon Manzano E, Alvarez Roman MT, Justo Sanz R et al (2020) Platelet and immune characteristics of immune thrombocytopaenia patients non-responsive to therapy reveal severe immune dysregulation. Br J Haematol 189(5):943–953. https://doi.org/10.1111/bjh.16459 - PubMed
  43. Ni H, Freedman J (2003) Platelets in hemostasis and thrombosis: role of integrins and their ligands. Transfus Apheres Sci 28(3):257–264 - PubMed
  44. Norris PA, Segel GB, Burack WR, et al. (2021) FcγRI and FcγRIII on splenic macrophages mediate phagocytosis of anti-glycoprotein IIb/IIIa autoantibody-opsonized platelets in immune thrombocytopenia. haematologica 106(1) - PubMed
  45. Odeleye AA, Presley AE, Passwater ME, Mintz PD (2004) Report of two cases: Rattlesnake venom-induced thrombocytopenia. Ann Clin Lab Sci 34(4):467–470 - PubMed
  46. Offerman SR, Barry JD, Schneir A, Clark RF (2003) Biphasic rattlesnake venom-induced thrombocytopenia. J Emerg Med 24(3):289–293. https://doi.org/10.1016/s0736-4679(02)00763-1 - PubMed
  47. Ogawa T, Chijiwa T, Oda-Ueda N, Ohno M (2005) Molecular diversity and accelerated evolution of C-type lectin-like proteins from snake venom. Toxicon 45(1):1–14. https://doi.org/10.1016/j.toxicon.2004.07.028 - PubMed
  48. Peng ML, Lu WQ, Beviglia L, Niewiarowski S, Kirby EP (1993) Echicetin - a Snake-Venom Protein That Inhibits Binding of Vonwillebrand-Factor and Alboaggregins to Platelet Glycoprotein-Ib. Blood 81(9):2321–2328 - PubMed
  49. Qiu J, Liu X, Li X et al (2016) CD8+ T cells induce platelet clearance in the liver via platelet desialylation in immune thrombocytopenia. Sci Rep 6(1):1–12 - PubMed
  50. Quach ME, Chen W, Li R (2018) Mechanisms of platelet clearance and translation to improve platelet storage. Blood 131(14):1512–1521. https://doi.org/10.1182/blood-2017-08-743229 - PubMed
  51. Reheman A, Yang H, Zhu G et al (2009) Plasma fibronectin depletion enhances platelet aggregation and thrombus formation in mice lacking fibrinogen and von Willebrand factor Blood. J Am Soc Hematol 113(8):1809–1817 - PubMed
  52. Revilla N, Corral J, Miñano A, et al. (2018) Multirefractory primary immune thrombocytopenia; targeting the decreased sialic acid content. Platelets:1–9 - PubMed
  53. Rucavado A, Soto M, Kamiguti AS et al (2001) Characterization of aspercetin, a platelet aggregating component from the venom of the snake Bothrops asper which induces thrombocytopenia and potentiates metalloproteinase-induced hemorrhage. Thromb Haemost 85(4):710–715 - PubMed
  54. Rumjantseva V, Grewal PK, Wandall HH et al (2009) Dual roles for hepatic lectin receptors in the clearance of chilled platelets. Nat Med 15(11):1273–1280 - PubMed
  55. Sanhajariya S, Isbister GK, Duffull SB (2020) The Influence of the Different Disposition Characteristics of Snake Toxins on the Pharmacokinetics of Snake Venom. Toxins 12(3):188 - PubMed
  56. Shao L, Wu Y, Zhou H et al (2015) Successful treatment with oseltamivir phosphate in a patient with chronic immune thrombocytopenia positive for anti-GPIb/IX autoantibody. Platelets 26(5):495–497 - PubMed
  57. Shen C, Liu M, Tian H et al (2020a) Conformation-Specific Blockade of alphaIIbbeta3 by a Non-RGD Peptide to Inhibit Platelet Activation without Causing Significant Bleeding and Thrombocytopenia. Thromb Haemost 120(10):1432–1441. https://doi.org/10.1055/s-0040-1714215 - PubMed
  58. Shen C, Liu M, Xu R et al (2020b) The 14–3-3zeta-c-Src-integrin-beta3 complex is vital for platelet activation. Blood 136(8):974–988. https://doi.org/10.1182/blood.2019002314 - PubMed
  59. Tao L, Zeng Q, Li J et al (2017) Platelet desialylation correlates with efficacy of first-line therapies for immune thrombocytopenia. J Hematol Oncol 10(1):1–4 - PubMed
  60. Tasoulis T, Isbister GK (2017) A Review and Database of Snake Venom Proteomes. Toxins 9(9) doi:Artn 29010.3390/Toxins9090290 - PubMed
  61. Tian H, Liu M, Li J et al (2020) Snake C-Type Lectins Potentially Contribute to the Prey Immobilization in Protobothrops mucrosquamatus and Trimeresurus stejnegeri Venoms. Toxins 12(2):105 - PubMed
  62. Villalta M, Pla D, Yang SL et al (2012) Snake venomics and antivenomics of Protobothrops mucrosquamatus and Viridovipera stejnegeri from Taiwan: keys to understand the variable immune response in horses. J Proteomics 75(18):5628–5645. https://doi.org/10.1016/j.jprot.2012.08.008 - PubMed
  63. Waheed H, Moin F, S, I Choudhary M, (2017) Snake venom: from deadly toxins to life-saving therapeutics. Curr Med Chem 24(17):1874–1891 - PubMed
  64. Wang Y, Reheman A, Spring CM et al (2014) Plasma fibronectin supports hemostasis and regulates thrombosis. J Clin Investig 124(10):4281–4293 - PubMed
  65. Warrell DA (2010) Snake bite. Lancet 375(9708):77–88. https://doi.org/10.1016/S0140-6736(09)61754-2 - PubMed
  66. Webster ML, Sayeh E, Crow M et al (2006) Relative efficacy of intravenous immunoglobulin G in ameliorating thrombocytopenia induced by antiplatelet GPIIbIIIa versus GPIbα antibodies. Blood 108(3):943–946 - PubMed
  67. Wedasingha S, Isbister G, Silva A (2020) Bedside Coagulation Tests in Diagnosing Venom-Induced Consumption Coagulopathy in Snakebite. Toxins (Basel) 12(9). https://doi.org/10.3390/toxins12090583 - PubMed
  68. Xu XR, Zhang D, Oswald BE et al (2016) Platelets are versatile cells: New discoveries in hemostasis, thrombosis, immune responses, tumor metastasis and beyond. Crit Rev Clin Lab Sci 53(6):409–430 - PubMed
  69. Xu M, Li J, Neves MAD et al (2018) GPIbα is required for platelet-mediated hepatic thrombopoietin generation. Blood 132(6):622–634 - PubMed
  70. Yamashita KM, Alves AF, Barbaro KC, Santoro ML (2014) Bothrops jararaca venom metalloproteinases are essential for coagulopathy and increase plasma tissue factor levels during envenomation. PLoS Negl Trop Dis 8(5):e2814 - PubMed
  71. Yang H, Reheman A, Chen P et al (2006) Fibrinogen and von Willebrand factor-independent platelet aggregation in vitro and in vivo. J Thromb Haemost 4(10):2230–2237 - PubMed
  72. Zeng Q, Zhu L, Tao L et al (2012) Relative efficacy of steroid therapy in immune thrombocytopenia mediated by anti-platelet GPIIbIIIa versus GPIbα antibodies. Am J Hematol 87(2):206–208 - PubMed

Publication Types

Grant support