Display options
Share it on

Sci Rep. 2021 Oct 06;11(1):19833. doi: 10.1038/s41598-021-99323-8.

Pilot investigation on the dose-dependent impact of irradiation on primary human alveolar osteoblasts in vitro.

Scientific reports

Anna-Klara Amler, Domenic Schlauch, Selin Tüzüner, Alexander Thomas, Norbert Neckel, Ingeborg Tinhofer, Max Heiland, Roland Lauster, Lutz Kloke, Carmen Stromberger, Susanne Nahles

Affiliations

  1. Cellbricks GmbH, Berlin, Germany. [email protected].
  2. Department of Medical Biotechnology, Technische Universität Berlin, Berlin, Germany. [email protected].
  3. Cellbricks GmbH, Berlin, Germany.
  4. Department of Medical Biotechnology, Technische Universität Berlin, Berlin, Germany.
  5. Department of Oral and Maxillofacial Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin, Germany.
  6. Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
  7. German Cancer Consortium (DKTK) Partner Site Berlin, Berlin, Germany.

PMID: 34615948 PMCID: PMC8494843 DOI: 10.1038/s41598-021-99323-8

Abstract

Radiotherapy of head and neck squamous cell carcinoma can lead to long-term complications like osteoradionecrosis, resulting in severe impairment of the jawbone. Current standard procedures require a 6-month wait after irradiation before dental reconstruction can begin. A comprehensive characterization of the irradiation-induced molecular and functional changes in bone cells could allow the development of novel strategies for an earlier successful dental reconstruction in patients treated by radiotherapy. The impact of ionizing radiation on the bone-forming alveolar osteoblasts remains however elusive, as previous studies have relied on animal-based models and fetal or animal-derived cell lines. This study presents the first in vitro data obtained from primary human alveolar osteoblasts. Primary human alveolar osteoblasts were isolated from healthy donors and expanded. After X-ray irradiation with 2, 6 and 10 Gy, cells were cultivated under osteogenic conditions and analyzed regarding their proliferation, mineralization, and expression of marker genes and proteins. Proliferation of osteoblasts decreased in a dose-dependent manner. While cells recovered from irradiation with 2 Gy, application of 6 and 10 Gy doses not only led to a permanent impairment of proliferation, but also resulted in altered cell morphology and a disturbed structure of the extracellular matrix as demonstrated by immunostaining of collagen I and fibronectin. Following irradiation with any of the examined doses, a decrease of marker gene expression levels was observed for most of the investigated genes, revealing interindividual differences. Primary human alveolar osteoblasts presented a considerably changed phenotype after irradiation, depending on the dose administered. Mechanisms for these findings need to be further investigated. This could facilitate improved patient care by re-evaluating current standard procedures and investigating faster and safer reconstruction concepts, thus improving quality of life and social integrity.

© 2021. The Author(s).

References

  1. J Craniomaxillofac Surg. 2015 Oct;43(8):1487-93 - PubMed
  2. Arch Otolaryngol Head Neck Surg. 2000 Sep;126(9):1124-8 - PubMed
  3. PLoS One. 2014 Aug 04;9(8):e104016 - PubMed
  4. Plast Reconstr Surg. 2000 Oct;106(5):1049-61 - PubMed
  5. Int J Clin Exp Pathol. 2014 Jan 15;7(2):496-508 - PubMed
  6. Clin Oral Implants Res. 2008 Dec;19(12):1219-25 - PubMed
  7. J Radiat Res. 2012;53(2):195-201 - PubMed
  8. Sci Rep. 2019 Dec 11;9(1):18896 - PubMed
  9. J Oral Implantol. 2012 Sep;38 Spec No:511-8 - PubMed
  10. Clin Oral Implants Res. 2013 Jul;24(7):812-9 - PubMed
  11. Adv Drug Deliv Rev. 2015 Nov 1;94:116-25 - PubMed
  12. Int J Radiat Oncol Biol Phys. 2021 Sep 1;111(1):196-207 - PubMed
  13. Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1609-14 - PubMed
  14. Med Oral Patol Oral Cir Bucal. 2019 May 1;24(3):e281-e289 - PubMed
  15. BMC Musculoskelet Disord. 2012 Jun 08;13:94 - PubMed
  16. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016 Mar;121(3):215-21.e1 - PubMed
  17. Oral Surg Oral Med Oral Pathol. 1987 Oct;64(4):379-90 - PubMed
  18. J Oral Maxillofac Surg. 1983 May;41(5):283-8 - PubMed
  19. Radiother Oncol. 2004 Nov;73(2):119-31 - PubMed
  20. Int J Radiat Biol. 2011 May;87(5):447-52 - PubMed
  21. Biofabrication. 2020 Feb 19;12(2):025013 - PubMed
  22. Oral Maxillofac Surg. 2019 Sep;23(3):297-305 - PubMed
  23. Exp Ther Med. 2020 Dec;20(6):283 - PubMed
  24. Int J Oral Implantol. 1990;6(2):23-31 - PubMed
  25. Radiat Res. 1998 May;149(5):463-71 - PubMed
  26. Toxicol In Vitro. 1991;5(5-6):427-30 - PubMed
  27. J Craniofac Surg. 2011 Sep;22(5):1635-40 - PubMed
  28. Calcif Tissue Int. 1996 Oct;59(4):307-8 - PubMed
  29. Radiat Environ Biophys. 2010 May;49(2):271-80 - PubMed
  30. Clin Oral Implants Res. 2021 Feb;32(2):249-261 - PubMed
  31. J Biomed Mater Res A. 2008 Sep 15;86(4):926-34 - PubMed
  32. J Bone Miner Metab. 2019 Jan;37(1):105-117 - PubMed
  33. Bone. 2004 Jan;34(1):148-56 - PubMed
  34. Radiat Oncol. 2015 Jun 09;10:129 - PubMed
  35. J Oral Biol Craniofac Res. 2013 May-Aug;3(2):92-7 - PubMed
  36. Head Neck. 2017 Jul;39(7):1313-1321 - PubMed
  37. Am J Otolaryngol. 1990 Jul-Aug;11(4):244-50 - PubMed
  38. Eur J Trauma Emerg Surg. 2010 Oct;36(5):457-63 - PubMed
  39. Ann Oncol. 2020 Nov;31(11):1462-1475 - PubMed
  40. BMB Rep. 2012 Oct;45(10):571-6 - PubMed
  41. J Craniomaxillofac Surg. 2017 May;45(5):716-721 - PubMed
  42. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010 Feb;109(2):173-84 - PubMed
  43. Clin Oral Implants Res. 2021 Apr;32(4):470-486 - PubMed
  44. Int J Oral Maxillofac Implants. 2011 Mar-Apr;26(2):385-92 - PubMed
  45. J Cell Sci. 1997 Sep;110 ( Pt 18):2187-96 - PubMed
  46. Oral Oncol. 2018 Dec;87:126-130 - PubMed
  47. Sci Rep. 2021 Mar 1;11(1):4876 - PubMed
  48. Br J Oral Maxillofac Surg. 2012 Oct;50(7):662-7 - PubMed

Publication Types