Display options
Share it on

ESC Heart Fail. 2021 Oct 26; doi: 10.1002/ehf2.13681. Epub 2021 Oct 26.

Predictive value of plasma volume status for contrast-induced nephropathy in patients with heart failure undergoing PCI.

ESC heart failure

Chen He, Sicheng Zhang, Haoming He, Zhebin You, Xueqin Lin, Liwei Zhang, Jiankang Chen, Kaiyang Lin

Affiliations

  1. Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Key Laboratory of Geriatrics, Fujian Provincial Center for Geriatrics, Fuzhou, 350001, China.
  2. Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Key Laboratory of Cardiovascular Disease, Fuzhou, Fujian, 350001, China.

PMID: 34704403 DOI: 10.1002/ehf2.13681

Abstract

AIMS: Contrast-induced nephropathy remains a common complication of coronary procedure and increases poor outcomes, especially in patients with heart failure. Plasma volume expansion relates to worsening prognosis of heart failure. We hypothesized that calculated plasma volume status (PVS) might provide predictive utility for contrast-induced nephropathy in patients with heart failure undergoing elective percutaneous coronary intervention (PCI).

METHODS AND RESULTS: We enrolled 441 patients with heart failure undergoing elective PCI from 2012 to 2018. Pre-procedural estimated PVS by the Duarte's formula (Duarte-ePVS) and Kaplan-Hakim formula (KH-ePVS) were calculated for all patients. CIN was defined as an absolute serum creatinine (SCr) increase ≥0.5 mg/dL or a relative increase ≥25% compared with the baseline value within 48 h of contrast medium exposure. We assessed the association between PVS and CIN in patients with heart failure undergoing elective PCI. In 441 patients, 28 (6.3%) patients developed CIN. The median Duarte-ePVS was 4.44 (3.87, 5.13) and the median KH-ePVS was -0.03 (-0.09, 0.05). The best cutoff values for Duarte-ePVS and KH-ePVS to predict CIN were 4.64 (with 78.6% sensitivity and 61.7% specificity) and 0.04 (with 64.5% sensitivity and 75.5% specificity), respectively. After adjusting for potential confounding variables, KH-ePVS > 0.04 [odds ratio (OR) 2.685, 95% confidence interval (CI) 1.012-7.123, P = 0.047] remained significantly associated with CIN whereas Duarte-ePVS was not.

CONCLUSIONS: Pre-procedural KH-ePVS is an independent risk factor for CIN in patients with heart failure undergoing elective PCI. The best cutoff point of KH-ePVS for predicting CIN was 0.04.

© 2021 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.

Keywords: Contrast-induced nephropathy; Elective percutaneous coronary intervention; Heart failure; Plasma volume status

References

  1. Briguori C, Tavano D, Colombo A. Contrast agent-associated nephrotoxicity. Prog Cardiovasc Dis 2003; 45: 493-503. - PubMed
  2. McCullough PA, Wolyn R, Rocher LL, Levin RN, O'Neill WW. Acute renal failure after coronary intervention: incidence, risk factors, and relationship to mortality. Am J Med 1997; 103: 368-375. - PubMed
  3. Mehran R, Aymong ED, Nikolsky E, Lasic Z, Iakovou I, Fahy M, Mintz GS, Lansky AJ, Moses JW, Stone GW, Leon MB, Dangas G. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation. J Am Coll Cardiol 2004; 44: 1393-1399. - PubMed
  4. Rihal CS, Textor SC, Grill DE, Berger PB, Ting HH, Best PJ, Singh M, Bell MR, Barsness GW, Mathew V, Garratt KN, Holmes DR Jr. Incidence and prognostic importance of acute renal failure after percutaneous coronary intervention. Circulation 2002; 105: 2259-2264. - PubMed
  5. Levy EM, Viscoli CM, Horwitz RI. The effect of acute renal failure on mortality. A cohort analysis. JAMA 1996; 275: 1489-1494. - PubMed
  6. Balemans CE, Reichert LJ, van Schelven BI, van den Brand JA, Wetzels JF. Epidemiology of contrast material-induced nephropathy in the era of hydration. Radiology 2012; 263: 706-713. - PubMed
  7. Silver SA, Shah PM, Chertow GM, Harel S, Wald R, Harel Z. Risk prediction models for contrast induced nephropathy: systematic review. BMJ 2015; 351: h4395. - PubMed
  8. Anand IS, Ferrari R, Kalra GS, Wahi PL, Poole-Wilson PA, Harris PC. Edema of cardiac origin. Studies of body water and sodium, renal function, hemodynamic indexes, and plasma hormones in untreated congestive cardiac failure. Circulation 1989; 80: 299-305. - PubMed
  9. Kalra PR, Anagnostopoulos C, Bolger AP, Coats AJ, Anker SD. The regulation and measurement of plasma volume in heart failure. J Am Coll Cardiol 2002; 39: 1901-1908. - PubMed
  10. Gibson JG, Seligman AM. The distribution of red cells and plasma in large and minute vessels of the normal dog, determined by radioactive isotopes of iron and iodine. J Clin Invest 1946; 25: 848-857. - PubMed
  11. International Committee for Standardization in Haematology. Recommended methods for measurement of red-cell and plasma volume. J Nucl Med. 1980; 21: 793-800. - PubMed
  12. Fudim M, Miller WL. Calculated estimates of plasma volume in patients with chronic heart failure-comparison with measured volumes. J Card Fail 2018; 24: 553-560. - PubMed
  13. Ling HZ, Flint J, Damgaard M, Bonfils PK, Cheng AS, Aggarwal S, Velmurugan S, Mendonca M, Rashid M, Kang S, Papalia F, Weissert S, Coats CJ, Thomas M, Kuskowski M, Cohn JN, Woldman S, Anand IS, Okonko DO. Calculated plasma volume status and prognosis in chronic heart failure. Eur J Heart Fail 2015; 17: 35-43. - PubMed
  14. Duarte K, Monnez JM, Albuisson E, Pitt B, Zannad F, Rossignol P. Prognostic value of estimated plasma volume in heart failure. JACC Heart Fail 2015; 3: 886-893. - PubMed
  15. Kobayashi M, Rossignol P, Ferreira JP, Aragão I, Paku Y, Iwasaki Y, Watanabe M, Fudim M, Duarte K, Zannad F, Girerd N. Prognostic value of estimated plasma volume in acute heart failure in three cohort studies. Clin Res Cardiol 2019; 108: 549-561. - PubMed
  16. Hakim RM. Plasmapheresis. In Dougirdas J. T., Blake P. G., Ing T. S., eds. Handbook of Dialysis, 3rd ed. Philadelphia: LIPINCOTT, Williams and Wilkins; 2001. p 236. - PubMed
  17. Jameson JL, Fauci AS, Kasper DL, Hauser SL, Longo DL, Loscalzo J. Body fluids and other mass data. Harrison's Principles of Internal Medicine, 18th ed. New York: McGraw Hill; 2011. p A-1. - PubMed
  18. JSN, JRS, JCS Joint Working Group. Guidelines on the use of iodinated contrast media in patients with kidney disease 2012. Circ J 2013; 77: 1883-1914. - PubMed
  19. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, Falk V, González-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GM, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P, Authors/Task Force Members, Document Reviewers. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 2016; 18: 891-975. - PubMed
  20. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 2002; 39: S1-S266. - PubMed
  21. Azzalini L, Spagnoli V, Ly HQ. Contrast-induced nephropathy: from pathophysiology to preventive strategies. Can J Cardiol 2016; 32: 247-255. - PubMed
  22. Rosenstock JL, Gilles E, Geller AB, Panagopoulos G, Mathew S, Malieckal D, DeVita MV, Michelis MF. Impact of heart failure on the incidence of contrast-induced nephropathy in patients with chronic kidney disease. Int Urol Nephrol 2010; 42: 1049-1054. - PubMed
  23. Liu Y, Li H, Chen S et al. Excessively high hydration volume may not be associated with decreased risk of contrast-induced acute kidney injury after percutaneous coronary intervention in patients with renal insufficiency. J Am Heart Assoc. 2016; 5: e003171. - PubMed
  24. Bei WJ, Wang K, Li HL, Guo XS, Guo W, Abuduaini T, Chen SQ, Islam SMS, Chen PY, Chen JY, Liu Y, Tan N. Safe hydration to prevent contrast-induced acute kidney injury and worsening heart failure in patients with renal insufficiency and heart failure undergoing coronary angiography or percutaneous coronary intervention. Int Heart J 2019; 60: 247-254. - PubMed
  25. Kobayashi M, Girerd N, Duarte K, Chouihed T, Chikamori T, Pitt B, Zannad F, Rossignol P. Estimated plasma volume status in heart failure: clinical implications and future directions. Clin Res Cardiol 2021; 110: 1159-1172. - PubMed
  26. Kobayashi M, Girerd N, Duarte K, Preud'homme G, Pitt B, Rossignol P. Prognostic impact of plasma volume estimated from hemoglobin and hematocrit in heart failure with preserved ejection fraction. Clin Res Cardiol 2020; 109: 1392-1401. - PubMed
  27. Huang CY, Lin TT, Wu YF, Chiang FT, Wu CK. Long-term prognostic value of estimated plasma volume in heart failure with preserved ejection fraction. Sci Rep 2019; 9: 14369. - PubMed
  28. Balderston JR, Shah KB, Paciulli SC, Gertz ZM. Usefulness of estimated plasma volume at postdischarge follow-up to predict recurrent events in patients with heart failure. Am J Cardiol 2018; 122: 1191-1194. - PubMed
  29. Massari F, Scicchitano P, Iacoviello M, Passantino A, Guida P, Sanasi M, Piscopo A, Romito R, Valle R, Caldarola P, Ciccone MM. Multiparametric approach to congestion for predicting long-term survival in heart failure. J Cardiol 2020; 75: 47-52. - PubMed
  30. Yoshihisa A, Abe S, Sato Y, Watanabe S, Yokokawa T, Miura S, Misaka T, Sato T, Suzuki S, Oikawa M, Kobayashi A, Yamaki T, Kunii H, Saitoh SI, Takeishi Y. Plasma volume status predicts prognosis in patients with acute heart failure syndromes. Eur Heart J Acute Cardiovasc Care 2018; 7: 330-338. - PubMed
  31. Grodin JL, Philips S, Mullens W, Nijst P, Martens P, Fang JC, Drazner MH, Tang WHW, Pandey A. Prognostic implications of plasma volume status estimates in heart failure with preserved ejection fraction: insights from TOPCAT. Eur J Heart Fail 2019; 21: 634-642. - PubMed
  32. Maznyczka AM, Barakat MF, Ussen B, Kaura A, Abu-Own H, Jouhra F, Jaumdally H, Amin-Youssef G, Nicou N, Baghai M, Deshpande R, Wendler O, Kolvekar S, Okonko DO. Calculated plasma volume status and outcomes in patients undergoing coronary bypass graft surgery. Heart 2019; 105: 1020-1026. - PubMed
  33. Kobayashi M, Huttin O, Donal E, Duarte K, Hubert A, le Breton H, Galli E, Fournet M, Mabo P, Schnell F, Leclercq C, Rossignol P, Girerd N. Association of estimated plasma volume status with hemodynamic and echocardiographic parameters. Clin Res Cardiol 2020; 109: 1060-1069. - PubMed
  34. Almufleh A, Desai AS, Fay R, Ferreira JP, Buckley LF, Mehra MR, Rossignol P, Zannad F. Correlation of laboratory haemoconcentration measures with filling pressures obtained via pulmonary arterial pressure sensors in ambulatory heart failure patients. Eur J Heart Fail 2020; 22: 1907-1911. - PubMed
  35. Mullens W, Abrahams Z, Francis GS, Sokos G, Taylor DO, Starling RC, Young JB, Tang WHW. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol 2009; 53: 589-596. - PubMed
  36. Damman K, Testani JM. The kidney in heart failure: an update. Eur Heart J 2015; 36: 1437-1444. - PubMed
  37. Prowle JR, Echeverri JE, Ligabo EV, Ronco C, Bellomo R. Fluid balance and acute kidney injury. Nat Rev Nephrol 2010; 6: 107-115. - PubMed

Publication Types

Grant support