Display options
Share it on

J Cell Physiol. 2021 Oct 27; doi: 10.1002/jcp.30619. Epub 2021 Oct 27.

Taurolithocholic acid but not tauroursodeoxycholic acid rescues phagocytosis activity of bone marrow-derived macrophages under inflammatory stress.

Journal of cellular physiology

Siyu Wu, Lorenzo Romero-Ramírez, Jörg Mey

Affiliations

  1. Unidad de Investigación, Laboratorio LRNI, Hospital Nacional de Parapléjicos, Toledo, Spain.
  2. School of Mental Health and Neuroscience and EURON Graduate School of Neuroscience, Maastricht University, Maastricht, The Netherlands.

PMID: 34705285 DOI: 10.1002/jcp.30619

Abstract

Spinal cord injury (SCI) causes cell death and consequently the breakdown of axons and myelin. The accumulation of myelin debris at the lesion site induces inflammation and blocks axonal regeneration. Hematogenous macrophages contribute to the removal of myelin debris. In this study, we asked how the inflammatory state of macrophages affects their ability to phagocytose myelin. Bone marrow-derived macrophages (BMDM) and Raw264.7 cells were stimulated with lipopolysaccharides (LPS) or interferon gamma (IFNγ), which induce inflammatory stress, and the endocytosis of myelin was examined. We found that activation of the TLR4-NFκB pathway reduced myelin uptake by BMDM, while IFNγ-Jak/STAT1 signaling did not. Since bile acids regulate lipid metabolism and in some cases reduce inflammation, our second objective was to investigate whether myelin clearance could be improved with taurolithocholic acid (TLCA), tauroursodeoxycholic acid or hyodeoxycholic acid. In BMDM only TLCA rescued myelin phagocytosis, when this activity was suppressed by LPS. Inhibition of protein kinase A blocked the effect of TLCA, while an agonist of the farnesoid X receptor did not rescue phagocytosis, implicating TGR5-PKA signaling in the effect of TLCA. To shed light on the mechanism, we measured whether TLCA affected the expression of CD36, triggering receptor on myeloid cells-2 (TREM2), and Gas6, which are known to be involved in phagocytosis and affected by inflammatory stimuli. Concomitant with an increase in expression of tumour necrosis factor alpha, LPS reduced expression of TREM2 and Gas6 in BMDM, and TLCA significantly diminished this downregulation. These findings suggest that activation of bile acid receptors may be used to improve myelin clearance in neuropathologies.

© 2021 The Authors. Journal of Cellular Physiology published by Wiley Periodicals LLC.

Keywords: Gpbr-1; TGR5; bile acid; inflammation; macrophage; myelin; phagocytosis

References

  1. Ackerman, H. D., & Gerhard, G. S. (2016). Bile disorders in neurodegenerative disorders. Frontiers in Aging Neuroscience, 8, 263. https://doi.org/10.3389/fnagi.2016.00263 - PubMed
  2. Albrecht, S., Fieck, A.-K., Kirchberg, I., Hucke, S., Liebmann, M., Klotz, L., & Kühlmann, T. (2017). Activation of FXR pathway does not alter glial cell function. Journal of Neuroinflammation, 14, 66. https://doi.org/10.1186/st12974-017-0833 - PubMed
  3. Amonyingcharoen, S., Suriyo, T., Thiantanawat, A., Watcharasit, P., & Satayavivad, J. (2015). Taurolithocholic acid promotes intrahepatic cholangiocarcinoma cell growth via muscarinic acetylcholine receptor and EGFR/ERK1/2 signaling pathway. International Journal of Oncology, 46, 2317-2326. - PubMed
  4. Austenaa, L. M., Carlsen, H., Hollung, K., Blomhoff, H. K., & Blomhoff, R. (2008). Retinoic acid dampens LPS-induced NF-kappaB activity: Results from human monoblasts and in vivo imaging of NF-kappaB reporter mice. Journal of Nutritional Biochemistry, 20, 726-734. - PubMed
  5. Blewett, M. M. (2010). Lipid autoreactivity in multiple sclerosis. Medical Hypotheses, 74, 433-442. - PubMed
  6. Brück, W., Porada, P., Poser, S., Rieckmann, P., Hanefeld, F., Kretzschmar, H. A., & Lassmann, H. (1995). Monocyte/macrophage differentiation in early multiple sclerosis lesions. Annals of Neurology, 38, 788-796. - PubMed
  7. Chan, A., Magnus, T., & Gold, R. (2001). Phagocytosis of apoptotic inflammatory cells by microglia and modulation by different cytokines: Mechanism for removal of apoptotic cells in the inflamed nervous system. GLIA, 33, 87-95. - PubMed
  8. Chiang, J. Y. L. (2013). Bile acid metabolism and signaling. Comprehensive Physiology, 3, 1191-1212. - PubMed
  9. Church, J. S., Millich, L. M., Lerch, J. K., Popovich, P. G., & McTigue, D. M. (2017). E6020, a synthetic TLR4 agonist, accelerates myelin debris clearance, Schwann cell infiltration, and remyelination in the rat spinal cord. GLIA, 65, 883-899. - PubMed
  10. Cipriani, S., Mencarelli, A., Chini, M. G., Distrutti, E., Renga, B., Bifulco, G., Baldelli, F., Donini, A., & Fiorucci, S. (2011). The bile acid receptor Gpbar-1 (TGR5) modulates integrity of intestinal barier and immune response to experimental colitis. PloS ONE, 6, e25637. https://doi.org/10.1371/journal.pone.0025637 - PubMed
  11. Cunha, M. I., Su, M., Cantuti-Castelvetri, L., Müller, S. A., Schifferer, M., Djannatian, M., Alexopoulos, I., van der Meer, F., Winkler, A., van Ham, T. J., Schmid, B., Lichtenthaler, S. F., Stadelmann, C., & Simons, M. (2020). Pro-inflammatory activation following demyelination is required for myelin clearance and oligodendrogenesis. Journal of Experimetnal Medicine, 217, e20191390. - PubMed
  12. David, S., & Kroner, A. (2011). Repertoire of microglial and macrophage responses after spinal cord injury. Nature Reviews Neuroscience, 12, 388-399. - PubMed
  13. De Marino, S., Carino, A., Masullo, D., Finamore, C., Marchianò, S., Cipriani, S., Di Leva, F. S., Catalanotti, B., Novellino, E., Limongelli, V., Fiorucci, S., & Zampella, A. (2017). Hyodeoycholic acid derivatives as liver X receptor a and G-protein-coupled bile acid receptor agonists. Scientific Reports, 7, 43290. https://doi.org/10.1038/srep43290 - PubMed
  14. Denk, G. U., Maitz, S., Wimmer, R., Rust, C., Invernizzi, P., Ferdinandusse, S., Kulik, W., Fuchsbichler, A., Fickert, P., Trauner, M., Hofmann, A. F., & Breuers, U. (2010). Conjugation is essential for the anticholestatic efect of NorUrsodeoxycholic acid in taurolithocholic acid-induced cholestasis in rat liver. Hepatology, 52, 1758-1768. - PubMed
  15. Dheen, S. T., Jun, Y., Yan, Z., Tay, S. S. W., & Ling, E. A. (2005). Retinoic acid inhibits expression of TNFa and iNOS in activated rat microglia. GLIA, 50, 21-31. - PubMed
  16. Dhungana, H., Huuskonen, M. T., Jaronen, M., Lemarchant, S., Ali, H., Keksa-Goldsteine, V., Goldsteins, G., Kanninen, K. M., Koistinaho, J., & Malm, T. (2017). Sulfosuccinimidyl oleate sodium is neuroprotective and alleviates stroke-induced neuroinflammation. Journal of Neuroinflammation, 14, 237. https://doi.org/10.1186/s12974-017-1010-7 - PubMed
  17. Ding, L., Yang, L., Wang, Z., & Huang, W. (2015). Bile acid nuclear receptor FXR and digestive system disease. Acta Pharmaceutica Sinica B, 5, 135-144. https://doi.org/10.1016/j.apsb.2015.01.004 - PubMed
  18. Dong, Y., Yang, S., Fu, B., Zhou, S., Ding, H., & Ma, W. (2020). Mechanism of tauroursodeoxycholic acid-mediated neuronal protection after acute spinal cord injury through AKT signaling pathway in rats. International Journal Of Clinical And Experimental Pathology, 13, 2218-2227. - PubMed
  19. Elia, A. E., Lalli, S., Monsurro, M. R., Sagnelli, A., Taiello, A. C., Reggiori, B., La, B., Tedeschi, V. G, & Albanese, A. (2016). Tauroursodeoxycholic acid in the treatment of patients with amyotrophic lateral sclerosis. European Journal of Neurology, 23, 45-52. - PubMed
  20. Fadok, V., Warner, M. L., Bratton, D. L., & Henson, P. M. (1998). CD36 is required for phagocytosis of apoptotic cells by human macrophages that use either a phosphatidylserine receptor or the vitronectin receptor (alpha v beta 3). Journal of Immunology, 161, 6250-6279. - PubMed
  21. Farr, S., Stankovic, B., Hoffman, S., Masoudpoor, H., Baker, C., Taher, J., Dean, A. E., Anakk, S., & Adeli, K. (2020). Bile acid treatment and FXR agonism lower postprandial lipemia in mice. American Journal of Physiology-Gastrointestinal and Liver Physiology. 318, G682-G693. - PubMed
  22. Feng, X., Deng, T., Zhang, Y., Su, S., Wei, C., & Han, D. (2010). Lipopolysaccharide inhibits macrophage phagocytosis of apoptotic neutrophils by regulating the production of tumour necrosis factor a and growth arrest-specific gene 6. Immunology, 132, 287-295. https://doi.org/10.1111/j.1365-2567.2010.03364.x - PubMed
  23. Fiorucci, S., Biagioli, M., Zampella, A., & Distrutti, E. (2018). Bile acids activated receptors regulate innate immunity. Frontiers in Immunology, 9, 1853. https://doi.org/10.3389/fimmu.2018.01853 - PubMed
  24. Fournier, A. E., & Strittmatter, S. M. (2001). Repulsive factors and axon regeneration in the CNS. Current Opinion in Neurobiology, 11, 89-94. - PubMed
  25. Freilich, R. W., Woodbury, M. E., & Ikezu, T. (2013). Integrated expression profiles of mRNA and miRNA in polarized primary murine microglia. PLoS One, 8, e79416. - PubMed
  26. Ghosh, M., Xu, Y., & Pearse, D. D. (2016). Cyclic AMP is a key regulator of M1 to M2a phenotypic conversion of microglia in the presence of Th2 cytokines. Journal of Neuroinflammation, 21, 506. https://doi.org/10.1186/s1297-015-0463-9 - PubMed
  27. Grajchen, E., Hendriks, J. J. A., & Bogie, J. F. J. (2018). The physiology of foamy phagocytes in multiple sclerosis. Acta Neuropathologica Communications, 6, 124. https://doi.org/10.1186/s40478-018-0628-8 - PubMed
  28. Grajchen, E., Wouters, W., Haterd, B., Haidar, M., Hardonnière, K., Diercks, T., Van Broeckhoven, J., Erens, C., van de Hendrix, S., Kerdine-Römer, S., Hendriks, J. J. A., & Bogie, J. F. J. (2020). CD36-mediated uptake of myelin debris by macrophages and microglia reduces neuroinflammation. Journal of Neuroinflammation, 17, 224. https://doi.org/10.1186/s12974-020-01899-x - PubMed
  29. Grant, S., & DeMorrow, S. (2020). Bile acid signaling in neurodegenerative and neurological disorders. International Journal of Molecular Sciences, 21, 5982. https://doi.org/10.3390/ijms21175982 - PubMed
  30. Greenhalgh, A. D., & David, S. (2014). Differences in the phagocytic response of microglia and peripheral macrophages after spinal cord injury and its effects on cell death. Journal of Neuroscience, 34, 6316-6322. - PubMed
  31. Guerrini, V., & Gennaro, M. L. (2019). Foam cells: One size doesn't fit all. Trends in Immunology, 40, 1163-1179. https://doi.org/10.1016/j.it.2019.10.002 - PubMed
  32. Guo, C., Chen, W.-D., & Wang, Y.-D. (2016). TGR5, not only a metabolic regulator. Frontiers in Physiology, 7, 646. https://doi.org/10.3399/fphys.2016.00646 - PubMed
  33. Hagio, M., Matsumoto, M., Fukushima, M., Hara, H., & Ishizuka, S. (2009). Improved analysis of bile acids in tissues and intestinal contents of rats using LC/ESI-MS. Journal of Lipid Research, 50, 173-180. - PubMed
  34. Hucke, S., Herold, M., Liebmann, M., Freise, N., Lindner, M., Fleck, A.-K., Zenker, S., Thiebes, S., Fernandez-Orth, J., Buck, D., Luessi, F., Meuth, S. G., Zipp, F., Hemmer, B., Engel, D. R., Roth, J., Kuhlmann, T., Wiendl, H., & Klotz, L. (2016). The farnesoid-X-receptor in myeloid cells controls CNS autoimmunity in an IL-10-dependent fashion. Acta Neuropathologica, 132, 413-431. - PubMed
  35. Jablonski, K. A., Amici, S. A., Webb, L. M., Ruiz-Rosado, J. dD., Popovich, P. G., Partida-Sánchez, S., & Guerau-de-Arellano, M. (2015). Novel markers to delinieate murine M1 and M2 macrophages. PLoS One, 10, e0145342. https://doi.org/10.1371/journal.pone.0145342 - PubMed
  36. Kampmann, E., Johann, S., van Neerven, S., Beyer, C., & Mey, J. (2008). Anti-inflammatory effect of retinoic acid on prostaglandin synthesis in cultured cortical astrocytes. Journal of Neurochemistry, 106, 320-332. - PubMed
  37. Kim, S. J., Ko, W. K., Jo, M. J., Arai, Y., Choi, H., Kumar, H., Han, I. B., & Sohn, S. (2018). Anti-inflammatory effect of Tauroursodeoxycholic acid in RAW 264.7 macrophages, bone marrow-derived macrophages, BV2 microglial cells, and spinal cord injury. Scientific Reports, 8, 3176. - PubMed
  38. Kopper, T. J., & Gensel, J. C. (2018). Myelin as an inflammatory mediator: Myelin interactions with complement, macrophages, and microglia in spinal cord injury. Journal of Neuroscience Research, 96, 969-977. - PubMed
  39. Kotter, M. R., Li, W.-W., Zhao, C., & Franklin, R. J. M. (2006). Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. Journal of Neuroscience, 26, 328-332. - PubMed
  40. Kotter, M. R., Setzu, A., Sim, F. J., N. V, Roojen, & Franklin, R. J. M. (2001). Macrophage depletion impairs oligodendrocyte remyelination following lysolecithin-induced demyelination. GLIA, 35, 204-212. https://doi.org/10.1002/glia.1085 - PubMed
  41. McKerracher, L., David, S., Jackson, D. L., Kottis, V., Dunn, R. J., & Braun, P. E. (1994). Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron, 13, 805-811. - PubMed
  42. McPhillips, K., Janssen, W. J., Ghosh, M., Byrne, A., Gardai, S., Remigio, L., Bratton, D. L., Kang, J. L., & Henson, P. (2007). TNF-alpha inhibits macrophage clearance of apoptotic cells via cytosolic phospholipase A2 and oxidant-dependent mechanisms. Journal of Immunology, 178, 8117-8126. - PubMed
  43. Michlewska, S., Dransfield, I., Megson, I. L., & Rossi, A. G. (2009). Macrophage phagocytosis of apoptotic neutrophils is critically regulated by the opposing actions of pro-inflammatory and anti-inflammatory agents: key role for TNF-a. FASEB Journal, 23, 844-854. https://doi.org/10.1096/fj.08-121228 - PubMed
  44. Myers, S. A., Andres, K. R., Hagg, T., & Whittemore, S. R. (2014). CD36 deletion improves recovery from spinal cord injury. Experimental Neurology, 256, 25-38. - PubMed
  45. Neumann, H., Kotter, M. R., & Franklin, R. J. (2009). Debris clearance by microglia: An essential link between degeneration and regeneration. Brain, 132, 288-295. - PubMed
  46. Nugent, A. A., Lin, K., van Lengerich, B., Lianoglou, S., Przybyla, L., Davis, S. S., Llapashtica, C., Wang, J., Kim, D. J., Xia, D., Lucas, A., Baskaran, S., Haddick, P. C. G., Lenser, M., Earr, T. K., Shi, J., Dugas, J. C., Andreone, B. J., Logan, T., … Di Paolo, T. (2020). TREM2 regulates microglial cholesterol metabolism upon chronic phagocytic challenge. Neuron, 105, 837-854. - PubMed
  47. Perino, A., Pols, T. W. H., Nomura, M., Stein, S., Pellicciari, R., & Schoonjans, K. (2014). TGR5 induces macrophage migration through mTOR-induced C/EBPb differential translation. Journal of Clinical Investigation, 124, 5424-5436. https://doi.org/10.1172/JCI76289 - PubMed
  48. Pols, T. W. H., Nomura, M., Harach, T., Lo Sasso, G., Ooosterveer, M. H., Thomas, C., Rizzo, G., Gioiello, A., Adorini, L., Pellicari, R., Auwerx, J., & Schoonjans, K. (2011a). TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell Metabolism, 14, 747-757. - PubMed
  49. Pols, T. W. H., Noriega, L. G., Nomura, M., Auwerx, J., & Schoonjans, K. (2011b). The bile acid membrane receptor TGR5: A valuable metabolic target. Digestive Diseases, 29, 37-44. https://doi.org/10.1159/000324126 - PubMed
  50. Ransohoff, R. M. (2016). A polarizing question: Do M1 and M2 microglia exist? Nature Neuroscience, 19, 987-991. - PubMed
  51. Rosa, A. I., Duarte-Silva, S., Silva-Fernandes, A., Nunes, M. J., Carvalho, A. N., Rodrigues, E., Gama, M. J., Rodrigues, C. M. P., Marciel, P., & Castro-Caldas, M. (2018). Tauroursodeoxycholic acid improves motor symptoms in a mouse model of Parkinson's disease. Molecular Neurobiology, 55, 9139-9155. - PubMed
  52. Scott, R. S., McMahon, E. J., Pop, S. M., Reap, E. A., Caricchio, R., Cohen, P. L., Earp, H. S., & Matsushima, G. K. (2001). Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature, 411, 207-211. - PubMed
  53. Seok, S., Fu, T., Choi, S.-E., Li, Y., Zhu, R., Kumar, S., Sun, X., Yoon, G., Kang, Y., Zhong, W., Ma, J., Kemper, B., & Kemper, J. K. (2014). Transcriptional regulation of autophagy by an FXR-CREB axis. Nature, 516, 108-111. - PubMed
  54. Song, M., Yang, Q., Zhang, F., Chen, L., Su, H., Yang, X., He, H., Liu, F., Zheng, J., Ling, M., Lai, X., Zhu, X., Wang, L., Gao, P., Shu, G., Jiang, Q., & Wang, S. (2019). Hyodeoxycholic acid (HDCA) suppresses intestinal epithelial cell proliferation through FXR-PI3K/AKT pathway, accompanied by alteratiion of bile acids metabolism profiles induced by gut bacteria. FASEB Journal, 34, 7103-7117. https://doi.org/10.1096/fj.201903244R - PubMed
  55. Suzuki, Y., Kaneko, R., Nomura, M., Naito, H., Kitamori, K., Nakajima, T., Ogawa, T., Hattori, H., Seno, H., & Ishii, A. (2013). Simple and rapid quantitation of 21 bile acids in rat serum and liver by UPLC-MS-MS: Effect of high fat diet on glycine conjugates of rat bile acids. Nagoya Journal of Medical Science. 75, 57-71. - PubMed
  56. Takahashi, K., Rochford, C. D. P., & Neumann, H. (2005). Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. Journal of Experimetnal Medicine, 201, 647-657. - PubMed
  57. Tripodi, V., Contin, M., Fernández, M. A., & Lemberg, A. (2012). Bile acids content in brain of common duct ligated rats. Annals Hepatol. 11, 930-934. - PubMed
  58. Turnbull, I. R., Gilfillan, S., Cella, M., Aoshi, T., Miller, M., Piccio, L., Hernandez, M., & Colonna, M. (2006). TREM-2 attenuates macrophage activation. Journal of Immunology, 177, 3520-3524. https://doi.org/10.4049/jimmunol.177.6.3520 - PubMed
  59. Ulland, T. K., & Colonna, M. (2018). TREM2-A key player in microglial biology and Alzheimer disease. Nature Reviews Neurology, 14, 667-675. - PubMed
  60. van Neerven, S., Kampmann, E., & Mey, J. (2008). RAR/RXR and PPAR/RXR signaling in neurological and psychiatric diseases. Progress in Neurobiology. 85, 433-451. - PubMed
  61. van Neerven, S., Nemes, A., Imholz, P., Regen, T., Denecke, B., Johann, S., Beyer, C., Hanisch, U.-K., & Mey, J. (2010a). Inflammatory cytokine release of astrocytes in vitro is reduced by all-trans retinoic acid. Journal of Neuroimmunology, 229, 169-179. https://doi.org/10.1016/j.jneuroim.2010.08.005 - PubMed
  62. van Neerven, S., Regen, T., Wolf, D., Nemes, A., Johann, S., Beyer, C., Hanisch, U.-K., & Mey, J. (2010b). Inflammatory chemokine release of astrocytes in vitro is reduced by all-trans retinoic acid. Journal of Neurochemistry, 114, 1511-1526. https://doi.org/10.1111/j.1471-4159.2010.06867.x - PubMed
  63. Wang, H., Chen, J., Hollister, K., Sowers, L. C., & Forman, B. M. (1999). Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Molecular Cell, 3, 543-553. - PubMed
  64. Wang, X., Cao, K., Sun, X., Chen, Y., Duan, Z., Sun, L., Guo, L., Bai, P., Sun, D., Fan, J., He, X., Young, W., & Ren, Y. (2015a). Macrophages in spinal cord injury: Phenotypic and functional change from exposure to myelin debris. GLIA, 63, 635-651. https://doi.org/10.1002/glia.22774 - PubMed
  65. Wang, Z., Zhou, S., Sun, C., Lei, T., Peng, J., Li, W., Ding, P., Lu, J., & Zhao, Y. (2015b). Interferon-γ inhibits nonopsonized phagocytosis of macorpages via an mTORC-cERPb pathway. J. Innate Immunity, 7, 165-176. https://doi.org/10.1159/000366421 - PubMed
  66. Wu, S., Romero-Ramírez, L., & Mey, J. (2021). Retinoic acid increases phagocytosis of myelin by macrophages. Journal of Cellular Physiology, 236, 3929-3945. - PubMed
  67. Wu, Y., Singh, S., Georgescu, M. -M., & Birge, R. B. (2015). A role for Mer tyrosine kinase a5vb5 integrin-mediated phagocytosis in apoptotic cells. Journal of Cell Science, 118, 539-553. - PubMed
  68. Yanguas-Casás, N., Barreda-Manso, M. A., Nieto-Sampedro, M., & Romero-Ramírez, L. (2014). Tauroursodeoxycholic acid reduces glial cell activation in an animal model of acute neuroinflammation. Journal of Neuroinflammation, 11, 50. - PubMed
  69. Yanguas-Casás, N., Barreda-Manso, M. A., Nieto-Sampedro, M., & Romero-Ramírez, L. (2017). TUDCA: An agonist of the bile acid receptor GPBAR1/TGR5 with anti-inflammatory effects in microglial cells. Journal of Cellular Physiology, 232, 2231-2245. - PubMed
  70. Zhang, S., Xu, W., Wang, H., Cao, M., Li, M., Zhao, J., Hu, Y., Wang, Y., Li, S., Xie, Y., Chen, G., Liu, R., Cheng, Y., Xu, Z., Zou, K., Gong, S., & Geng, L. (2019). Inhibition of CREB-mediated ZO-1 and activation of NFkB-induced IL-6 by colonic epithelial MCT4 destroys intestinal barrier function. Cell Proliferation, 52, e12673. https://doi.org/10.1111/cpr12673 - PubMed
  71. Zhu, Y., Lyapichev, K., Lee, D. H., Motti, D., Ferraro, N. M., Zhang, Y., Yahn, S., Soderblom, C., Zha, J., Bethea, J. R., Spiller, K. L., Lemmon, V. P., & Lee, J. K. (2017). Macrophage Transcriptional Profile Identifies Lipid Catabolic Pathways That Can Be Therapeutically Targeted after Spinal Cord Injury. Journal of Neuroscience, 37, 2362-2376. - PubMed

Publication Types

Grant support