Display options
Share it on

Environ Sci Pollut Res Int. 2021 Dec;28(47):67891-67897. doi: 10.1007/s11356-021-17166-2. Epub 2021 Oct 29.

Iron (III) hydroxocomplex-methyl viologen dication system as a prospective tool for determination of hydroxyl radical reaction rate constants with environmental pollutants.

Environmental science and pollution research international

Yuliya E Tyutereva, Vyacheslav P Grivin, Jing Xu, Feng Wu, Victor F Plyusnin, Ivan P Pozdnyakov

Affiliations

  1. V.V. Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya str, Novosibirsk, Russian Federation, 630090.
  2. Novosibirsk State University, 2 Pirogova St, Novosibirsk, Russian Federation, 630090.
  3. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, People's Republic of China.
  4. Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resources and Environmental Science, Wuhan University, 430079, Wuhan, People's Republic of China.
  5. V.V. Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya str, Novosibirsk, Russian Federation, 630090. [email protected].
  6. Novosibirsk State University, 2 Pirogova St, Novosibirsk, Russian Federation, 630090. [email protected].

PMID: 34714477 DOI: 10.1007/s11356-021-17166-2

Abstract

Reactivity of oxidative species with target pollutants is one of the crucial parameters for application of any system based on advanced oxidation processes (AOPs). This work presents new useful approach how to determine the hydroxyl radical reaction rate constants (k

© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Keywords: AOPs; Hydroxyl radical; Iron hydroxocomplex; Laser flash photolysis; Methyl viologen dication; Reaction rate constants

References

  1. Benkelberg H-J, Warneck P (1995) Photodecomposition of iron(III) hydroxo and sulfato complexes in aqueous solution: wavelength dependence of OH and SO4- quantum yields. J Phys Chem. https://doi.org/10.1021/j100014a049 - PubMed
  2. Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O−) in aqueous solution. Phys Chem Ref Data. https://doi.org/10.1063/1.555805 - PubMed
  3. Catastini C, Rafqah S, Mailhot G, Sarakha M (2004) Degradation of amitrole by excitation of Fe(III) aquo complexes in aqueous solutions. J Photochem Photobiol A. https://doi.org/10.1016/S1010-6030(03)00316-2 - PubMed
  4. Deng Y, Zhao R (2015) Advanced oxidation processes (AOPs) in wastewater treatment Curr Pollution Rep, DOI 10.1007/s40726-015-0015-z - PubMed
  5. Giannakis S., Liu S., Carratalà A., Rtimi S., Talebi Amiri M., Bensimon M., Pulgarin C. (2017b). Iron oxide-mediated semiconductor photocatalysis vs. heterogeneous photo-Fenton treatment of viruses in wastewater. Impact of the oxide particle size. Journal of Hazardous Materials DOI:10.1016/j.jhazmat.2017.06.037 (a) - PubMed
  6. Giannakis S., Liu S., Carratalà A., Rtimi S., Bensimon M., Pulgarin C. (2017a). Effect of Fe(II)/Fe(III) species, pH, irradiance and bacterial presence on viral inactivation in wastewater by the photo-Fenton process: kinetic modeling and mechanistic interpretation. Applied Catalysis B: Environmental, DOI:10.1016/j.apcatb.2016.11.034 (b) - PubMed
  7. Haag WR, Yao CCD (1992) Rate constants for reaction of hydroxyl radicals with several drinking water contaminants. Environ Sci Technol. https://doi.org/10.1021/es00029a021 - PubMed
  8. Joseph JM., Luke TL., Aravind UK., Aravindakumar, CT. (2001) Photochemical production of hydroxyl radical from aqueous iron(III)–hydroxy complex: determination of its reaction rate constants with some substituted benzenes using deoxyribose-thiobarbituric acid assay. Water Environ. Res., DOI: 10.2175/106143001x139236 (a) - PubMed
  9. Joseph JM., Varghese R., Aravindakumar CT. (2001b). Photoproduction of hydroxyl radicals from Fe(III)-hydroxy complex: a quantitative assessment. Journal of Photochemistry and Photobiology A: Chemistry, DOI:10.1016/s1010-6030(01)00589-5 (b) - PubMed
  10. Lee C, Yoon J (2004) Determination of quantum yields for the photolysis of Fe(III)-hydroxo complexes in aqueous solution using a novel kinetic method. Chemosphere. https://doi.org/10.1016/j.chemosphere.2004.07.052 - PubMed
  11. Orellana-García F, Álvarez MA, López-Ramón MV, Rivera-Utrilla J, Sánchez-Polo M (2015) Effect of HO - PubMed
  12. Peller J, Kamat PV (2005) Radiolytic transformations of chlorinated phenols and chlorinated phenoxyacetic acids. J Phys Chem A. https://doi.org/10.1021/jp053001s - PubMed
  13. Pozdnyakov IP, Glebov EM, Plyusnin VF, Grivin VP, Ivanov YV, Bazhin NM, Vorobjev DY (2000) Mechanism of Fe(OH) - PubMed
  14. Rafqah S, Aamili A, Nelieu S, Kerhoas L, Einhorn J, Mailhot G, Sarakha M (2004) Kinetics and mechanism of the degradation of the pesticide metsulfuron methyl induced by excitation of iron(III) aqua complexes in aqueous solutions: steady state and transient absorption spectroscopy studies. Photochem Photobiol Sci. https://doi.org/10.1039/B314001F - PubMed
  15. Sánchez-Polo M, Abdel Daiem MM, Ocampo-Pérez R, Rivera-Utrilla J, Mota AJ (2013) Comparative study of the photodegradation of bisphenol A by HO - PubMed
  16. Shen J, Ding T, Zhang M (2019), Analytical techniques and challenges for removal of pharmaceuticals and personal care products in water, In: Editor(s): Narasimha M. Prasad V., Vithanage M., Kapley A. (Ed.) Pharmaceuticals and personal care products: waste management and treatment technology, Butterworth-Heinemann, Pages 239-257, DOI: 10.1016/B978-0-12-816189-0.00010-X. - PubMed
  17. Solar S, Solar W, Getoff N, Holcman J, Sehested K (1985) Reactivity of OH and O– with aqueous methyl viologen studied by pulse radiolysis, J Chem Soc Faraday Trans 1, DOI: 10.1039/F19858101101 - PubMed
  18. Solís RR, Rivas FJ, Gimeno O, Pérez-Bote JL (2014) Photocatalytic ozonation of clopyralid, picloram and triclopyr. Kinetics, toxicity and influence of operational parameters. J Chem Tech Biotech, DOI: 10.1002/jctb.4542 - PubMed
  19. Terzian R, Serpone N, Fox MA (1995) Primary radicals in the photo-oxidation of aromatics reactions of xylenols with - PubMed
  20. Villegas-Guzman P., Giannakis S., Rtimi S., Grandjean D., Bensimon M., de Alencastro LF., , Torres-Palma R., Pulgarin C. (2017). A green solar photo-Fenton process for the elimination of bacteria and micropollutants in municipal wastewater treatment using mineral iron and natural organic acids. Applied Catalysis B: Environmental, DOI: https://doi.org/10.1016/j.apcatb.2017.07.066 - PubMed
  21. Zhang X, Wu F, Deng N, Pozdnyakov IP, Glebov EM, Grivin VP, Plyusnin VF, Bazhin NM (2008) Evidence of hydroxyl radical formation upon the photolysis of iron-rich clay in aqueous solutions. React Kinet Catal Lett. https://doi.org/10.1007/s11144-008-5342-2 - PubMed
  22. Zona R, Solar S, Sehested K, Holcman J, Mezyk SP (2002) OH-radical induced oxidation of phenoxyacetic acid and 2,4-dichlorophenoxyacetic acid. primary radical steps and products, J. Phys. Chem. A, DOI: 10.1021/jp020125l - PubMed
  23. Zona R, Solar S, Sehested K (2012) OH-radical induced degradation of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) and 4-chloro-2-methylphenoxyacetic acid (MCPA): A pulse radiolysis and gamma-radiolysis study, Rad Phys Chem, DOI: 10.1016/j.radphyschem.2011.09.012 - PubMed

Publication Types

Grant support