Display options
Share it on

Cells. 2021 Oct 14;10(10). doi: 10.3390/cells10102750.

Origin and Isoform Specific Functions of Exchange Proteins Directly Activated by cAMP: A Phylogenetic Analysis.

Cells

Zhuofu Ni, Xiaodong Cheng

Affiliations

  1. Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
  2. Texas Therapeutics Institute, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.

PMID: 34685730 PMCID: PMC8534922 DOI: 10.3390/cells10102750

Abstract

Exchange proteins directly activated by cAMP (EPAC1 and EPAC2) are one of the several families of cellular effectors of the prototypical second messenger cAMP. To understand the origin and molecular evolution of EPAC proteins, we performed a comprehensive phylogenetic analysis of EPAC1 and EPAC2. Our study demonstrates that unlike its cousin PKA, EPAC proteins are only present in multicellular Metazoa. Within the EPAC family, EPAC1 is only associated with chordates, while EPAC2 spans the entire animal kingdom. Despite a much more contemporary origin, EPAC1 proteins show much more sequence diversity among species, suggesting that EPAC1 has undergone more selection and evolved faster than EPAC2. Phylogenetic analyses of the individual cAMP binding domain (CBD) and guanine nucleotide exchange (GEF) domain of EPACs, two most conserved regions between the two isoforms, further reveal that EPAC1 and EPAC2 are closely clustered together within both the larger cyclic nucleotide receptor and RAPGEF families. These results support the notion that EPAC1 and EPAC2 share a common ancestor resulting from a fusion between the CBD of PKA and the GEF from RAPGEF1. On the other hand, the two terminal extremities and the RAS-association (RA) domains show the most sequence diversity between the two isoforms. Sequence diversities within these regions contribute significantly to the isoform-specific functions of EPACs. Importantly, unique isoform-specific sequence motifs within the RA domain have been identified.

Keywords: EPAC1; EPAC2; cyclic nucleotide; guanine nucleotide exchange factor; phylogenetics

References

  1. J Biol Chem. 1994 Dec 9;269(49):30781-4 - PubMed
  2. J Cell Physiol. 2009 Jun;219(3):652-8 - PubMed
  3. J Biol Chem. 2002 Mar 29;277(13):11497-504 - PubMed
  4. Nat Cell Biol. 2001 Nov;3(11):1020-4 - PubMed
  5. Cell Metab. 2011 Mar 2;13(3):331-9 - PubMed
  6. J Cardiovasc Dev Dis. 2014 May 21;1(1):121-133 - PubMed
  7. Nature. 2021 Aug;596(7873):590-596 - PubMed
  8. J Biol Chem. 2011 Jan 7;286(1):859-66 - PubMed
  9. Curr Opin Neurobiol. 1997 Jun;7(3):404-12 - PubMed
  10. J Neurosci. 2012 Aug 22;32(34):11864-78 - PubMed
  11. Mol Cell Biol. 2010 Aug;30(16):3956-69 - PubMed
  12. Pain. 2016 Jul;157(7):1541-1550 - PubMed
  13. Am J Physiol Heart Circ Physiol. 2008 Oct;295(4):H1547-55 - PubMed
  14. Mol Cell Neurosci. 2011 Feb;46(2):368-80 - PubMed
  15. Mol Cell Biochem. 2018 Oct;447(1-2):77-92 - PubMed
  16. J Neurosci. 2005 Jun 29;25(26):6119-26 - PubMed
  17. Sci Adv. 2020 Jan 01;6(1):eaay3566 - PubMed
  18. J Biol Chem. 2009 Jan 16;284(3):1514-22 - PubMed
  19. Science. 1998 Dec 18;282(5397):2275-9 - PubMed
  20. FASEB J. 2018 Apr;32(4):2212-2222 - PubMed
  21. Science. 2009 Jul 31;325(5940):607-10 - PubMed
  22. J Clin Invest. 2014 Jun;124(6):2785-801 - PubMed
  23. Proc Natl Acad Sci U S A. 2005 Jan 4;102(1):45-50 - PubMed
  24. J Clin Invest. 2013 Dec;123(12):5023-34 - PubMed
  25. Nat Neurosci. 2009 Oct;12(10):1275-84 - PubMed
  26. Circ Res. 2008 Apr 25;102(8):959-65 - PubMed
  27. Sci Rep. 2016 Nov 10;6:36552 - PubMed
  28. Mol Cell Biol. 2008 Dec;28(23):7109-25 - PubMed
  29. J Biol Chem. 2000 Jul 7;275(27):20829-36 - PubMed
  30. BMC Bioinformatics. 2007 Nov 22;8:460 - PubMed
  31. Arterioscler Thromb Vasc Biol. 2020 Dec;40(12):e322-e335 - PubMed
  32. Biochem Biophys Res Commun. 2016 Jun 17;475(1):1-7 - PubMed
  33. Cell Signal. 2015 May;27(5):989-96 - PubMed
  34. Proc Natl Acad Sci U S A. 2020 Apr 7;117(14):7845-7850 - PubMed
  35. J Biol Chem. 2002 Jul 19;277(29):26581-6 - PubMed
  36. Circ Res. 2016 Mar 4;118(5):881-97 - PubMed
  37. PLoS Genet. 2013;9(12):e1003960 - PubMed
  38. J Biol Chem. 2006 Feb 3;281(5):2506-14 - PubMed
  39. Acta Biochim Biophys Sin (Shanghai). 2016 Jan;48(1):75-81 - PubMed
  40. Mol Cell Biol. 2013 Mar;33(5):918-26 - PubMed
  41. Trends Endocrinol Metab. 2014 Feb;25(2):60-71 - PubMed
  42. Trends Cell Biol. 2011 Oct;21(10):615-23 - PubMed
  43. Circulation. 2013 Feb 26;127(8):913-22 - PubMed
  44. J Cell Physiol. 2012 Dec;227(12):3756-67 - PubMed
  45. Gene. 2016 Jan 10;575(2 Pt 3):577-83 - PubMed
  46. Nat Rev Mol Cell Biol. 2012 Oct;13(10):646-58 - PubMed
  47. Cell Signal. 2013 Apr;25(4):970-80 - PubMed
  48. Circ Res. 2005 Dec 9;97(12):1296-304 - PubMed
  49. Biochem J. 2015 Jan 15;465(2):295-303 - PubMed
  50. PLoS Biol. 2012;10(6):e1001350 - PubMed
  51. Biochim Biophys Acta. 2003 Feb 17;1593(2-3):141-9 - PubMed
  52. J Clin Invest. 2014 Jan;124(1):367-84 - PubMed
  53. Cell Signal. 2008 Oct;20(10):1715-24 - PubMed
  54. Physiol Rev. 2018 Apr 1;98(2):919-1053 - PubMed
  55. Int J Mol Sci. 2020 Sep 05;21(18): - PubMed
  56. J Comput Biol. 2002;9(5):687-705 - PubMed
  57. Proc Natl Acad Sci U S A. 2008 Apr 29;105(17):6386-91 - PubMed
  58. Bioinformatics. 2007 May 1;23(9):1073-9 - PubMed
  59. Nature. 2008 May 8;453(7192):175-83 - PubMed
  60. Proc Natl Acad Sci U S A. 2013 Nov 26;110(48):19615-20 - PubMed
  61. Pharmacol Rev. 2013 Feb 27;65(2):670-709 - PubMed
  62. Nature. 2008 Sep 4;455(7209):124-7 - PubMed
  63. Cell Signal. 2009 Jun;21(6):906-15 - PubMed
  64. J Biol Chem. 1999 Dec 31;274(53):38125-30 - PubMed
  65. Acta Biochim Biophys Sin (Shanghai). 2008 Jul;40(7):651-62 - PubMed
  66. Nature. 2006 Feb 2;439(7076):625-8 - PubMed
  67. Nature. 1998 Dec 3;396(6710):474-7 - PubMed
  68. J Biol Chem. 2007 Feb 23;282(8):5488-95 - PubMed
  69. Diabetes. 2004 Jan;53(1):5-13 - PubMed
  70. Diabetes. 2017 Oct;66(10):2610-2622 - PubMed
  71. Proc Natl Acad Sci U S A. 2012 Nov 6;109(45):18613-8 - PubMed
  72. Nucleic Acids Res. 2012 Jul;40(Web Server issue):W281-7 - PubMed
  73. Trends Biochem Sci. 1996 Nov;21(11):422-5 - PubMed
  74. Diabetes. 2011 Jan;60(1):218-26 - PubMed
  75. J Mol Biol. 1990 Oct 5;215(3):403-10 - PubMed
  76. Genome Biol. 2007;8(12):R264 - PubMed
  77. Arterioscler Thromb Vasc Biol. 2015 Dec;35(12):2617-25 - PubMed
  78. J Virol. 2014 Apr;88(7):3902-10 - PubMed
  79. J Neurosci. 2010 Sep 22;30(38):12806-15 - PubMed
  80. Neuron. 2012 Feb 23;73(4):774-88 - PubMed
  81. Nat Struct Biol. 1997 Aug;4(8):609-15 - PubMed
  82. Gene. 2015 Oct 10;570(2):157-67 - PubMed

Publication Types

Grant support