Display options
Share it on

Cells. 2021 Nov 13;10(11). doi: 10.3390/cells10113159.

Identification of Cellular Factors Required for SARS-CoV-2 Replication.

Cells

Aleksandra Synowiec, Malwina Jedrysik, Wojciech Branicki, Adrianna Klajmon, Jing Lei, Katarzyna Owczarek, Chen Suo, Artur Szczepanski, Jingru Wang, Pengyan Zhang, Pawel P Labaj, Krzysztof Pyrc

Affiliations

  1. ViroGenetics-BSL3 Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland.
  2. Human Genome Variation Research Group, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland.
  3. Key Laboratory of Public Health Safety, Department of Epidemiology & Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China.
  4. Taizhou Institute of Health Sciences, Fudan University, Taizhou 225316, China.
  5. Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
  6. Bioinformatics Research Group, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland.

PMID: 34831382 PMCID: PMC8622730 DOI: 10.3390/cells10113159

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the recently emerged virus responsible for the COVID-19 pandemic. Clinical presentation can range from asymptomatic disease and mild respiratory tract infection to severe disease with lung injury, multiorgan failure, and death. SARS-CoV-2 is the third animal coronavirus to emerge in humans in the 21st century, and coronaviruses appear to possess a unique ability to cross borders between species and infect a wide range of organisms. This is somewhat surprising as, except for the requirement of host cell receptors, cell-pathogen interactions are usually species-specific. Insights into these host-virus interactions will provide a deeper understanding of the process of SARS-CoV-2 infection and provide a means for the design and development of antiviral agents. In this study, we describe a complex analysis of SARS-CoV-2 infection using a genome-wide CRISPR-Cas9 knock-out system in HeLa cells overexpressing entry receptor angiotensin-converting enzyme 2 (ACE2). This platform allows for the identification of factors required for viral replication. This study was designed to include a high number of replicates (48 replicates; 16 biological repeats with 3 technical replicates each) to prevent data instability, remove sources of bias, and allow multifactorial bioinformatic analyses in order to study the resulting interaction network. The results obtained provide an interesting insight into the replication mechanisms of SARS-CoV-2.

Keywords: CRISPR-Cas9; SARS-CoV-2; cellular factors; coronavirus; mechanisms of infection; viral pathogenesis

References

  1. Nature. 2020 Mar;579(7798):270-273 - PubMed
  2. Cell Res. 2010 Jul;20(7):802-11 - PubMed
  3. Nat Rev Microbiol. 2021 Mar;19(3):155-170 - PubMed
  4. Biomedicines. 2021 May 17;9(5): - PubMed
  5. Nat Methods. 2012 Jun 28;9(7):676-82 - PubMed
  6. Cell. 2021 Jan 7;184(1):76-91.e13 - PubMed
  7. Nat Rev Microbiol. 2019 Mar;17(3):181-192 - PubMed
  8. Nat Methods. 2015 Feb;12(2):115-21 - PubMed
  9. Viruses. 2021 Sep 25;13(10): - PubMed
  10. Oncogene. 2018 Dec;37(49):6327-6340 - PubMed
  11. Front Immunol. 2021 Apr 13;12:666693 - PubMed
  12. Proc Natl Acad Sci U S A. 2019 May 7;116(19):9527-9532 - PubMed
  13. Science. 2015 Jan 23;347(6220):1260419 - PubMed
  14. Science. 2020 Nov 13;370(6518):856-860 - PubMed
  15. Science. 2014 Jan 3;343(6166):84-87 - PubMed
  16. Cell. 2021 Jan 7;184(1):106-119.e14 - PubMed
  17. Nat Protoc. 2009;4(1):44-57 - PubMed
  18. Cell Rep. 2018 Apr 10;23(2):596-607 - PubMed
  19. Trends Immunol. 2021 Jan;42(1):3-5 - PubMed
  20. Science. 2020 Nov 13;370(6518):861-865 - PubMed
  21. Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):E2579-86 - PubMed
  22. Oncotarget. 2014 Aug 30;5(16):6964-75 - PubMed
  23. Nat Commun. 2017 May 05;8:15178 - PubMed
  24. Cell. 2021 Jan 7;184(1):120-132.e14 - PubMed
  25. Genome Biol. 2014;15(12):554 - PubMed
  26. Nat Microbiol. 2021 Oct;6(10):1219-1232 - PubMed
  27. Virol J. 2016 Feb 25;13:33 - PubMed
  28. Cell. 2021 Jan 7;184(1):92-105.e16 - PubMed
  29. Cell. 2017 Oct 19;171(3):683-695.e18 - PubMed
  30. Antiviral Res. 2019 Oct;170:104563 - PubMed
  31. Nat Genet. 2017 Feb;49(2):193-203 - PubMed
  32. J Mol Biol. 2006 Dec 15;364(5):964-73 - PubMed
  33. Eur Respir J. 2020 Nov 26;56(5): - PubMed
  34. Mol Cell. 2020 Oct 1;80(1):164-174.e4 - PubMed
  35. Nat Methods. 2014 Aug;11(8):783-784 - PubMed
  36. Front Microbiol. 2021 Jul 29;12:701198 - PubMed
  37. Signal Transduct Target Ther. 2021 Mar 27;6(1):134 - PubMed
  38. Nucleic Acids Res. 2009 Jan;37(1):1-13 - PubMed
  39. Clin Microbiol Rev. 2021 Jan 13;34(2): - PubMed
  40. Science. 2012 Aug 17;337(6096):816-21 - PubMed
  41. Nat Rev Mol Cell Biol. 2021 Oct 5;: - PubMed
  42. Cell. 2020 Apr 16;181(2):271-280.e8 - PubMed
  43. Viruses. 2021 May 28;13(6): - PubMed
  44. Trends Microbiol. 2017 Jan;25(1):35-48 - PubMed
  45. Cell. 2015 Mar 12;160(6):1246-60 - PubMed

Publication Types

Grant support