Display options
Share it on

Nat Biotechnol. 2021 Dec 06; doi: 10.1038/s41587-021-01089-x. Epub 2021 Dec 06.

T cells targeted to TdT kill leukemic lymphoblasts while sparing normal lymphocytes.

Nature biotechnology

Muhammad Ali, Eirini Giannakopoulou, Yingqian Li, Madeleine Lehander, Stina Virding Culleton, Weiwen Yang, Cathrine Knetter, Mete Can Odabasi, Ravi Chand Bollineni, Xinbo Yang, Zsofia Foldvari, Maxi-Lu Böschen, Eli Taraldsrud, Erlend Strønen, Mireille Toebes, Amy Hillen, Stefania Mazzi, Arnoud H de Ru, George M C Janssen, Arne Kolstad, Geir Erland Tjønnfjord, Benedicte A Lie, Marieke Griffioen, Sören Lehmann, Liv Toril Osnes, Jochen Buechner, K Christopher Garcia, Ton N Schumacher, Peter A van Veelen, Matthias Leisegang, Sten Eirik W Jacobsen, Petter Woll, Johanna Olweus

Affiliations

  1. Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.
  2. K.G. Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
  3. Department of Medicine, Huddinge Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden.
  4. Charité - Universitätsmedizin Berlin, Institute of Immunology, Berlin, Germany.
  5. Parker Institute for Cancer Immunotherapy, Howard Hughes Medical Institute, Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
  6. Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
  7. Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
  8. Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands.
  9. Department of Oncology, Oslo University Hospital Radiumhospitalet, Oslo, Norway.
  10. Department of Haematology, Oslo University Hospital and KG Jebsen Center for B cell malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
  11. Department of Medical Genetics, University of Oslo and Oslo University Hospital, Oslo, Norway.
  12. Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands.
  13. Department of Medical Sciences, Uppsala University Hospital, Uppsala, Sweden.
  14. Department of Immunology, Oslo University Hospital, Oslo, Norway.
  15. Department of Pediatric Hematology and Oncology, Oslo University Hospital, Oslo, Norway.
  16. Department of Immunohematology and Bloodtransfusion, Leiden University Medical Center, Leiden, the Netherlands.
  17. David and Etta Jonas Center for Cellular Therapy, The University of Chicago, Chicago, IL, USA.
  18. German Cancer Consortium, partner site Berlin, Berlin, Germany.
  19. German Cancer Research Center, Heidelberg, Germany.
  20. Karolinska University Hospital, Stockholm, Sweden.
  21. MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
  22. Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway. [email protected].
  23. K.G. Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway. [email protected].

PMID: 34873326 DOI: 10.1038/s41587-021-01089-x

Abstract

Unlike chimeric antigen receptors, T-cell receptors (TCRs) can recognize intracellular targets presented on human leukocyte antigen (HLA) molecules. Here we demonstrate that T cells expressing TCRs specific for peptides from the intracellular lymphoid-specific enzyme terminal deoxynucleotidyl transferase (TdT), presented in the context of HLA-A*02:01, specifically eliminate primary acute lymphoblastic leukemia (ALL) cells of T- and B-cell origin in vitro and in three mouse models of disseminated B-ALL. By contrast, the treatment spares normal peripheral T- and B-cell repertoires and normal myeloid cells in vitro, and in vivo in humanized mice. TdT is an attractive cancer target as it is highly and homogeneously expressed in 80-94% of B- and T-ALLs, but only transiently expressed during normal lymphoid differentiation, limiting on-target toxicity of TdT-specific T cells. TCR-modified T cells targeting TdT may be a promising immunotherapy for B-ALL and T-ALL that preserves normal lymphocytes.

© 2021. The Author(s).

References

  1. Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018). - PubMed
  2. Grupp, S. A. et al. Updated analysis of the efficacy and safety of tisagenlecleucel in pediatric and young adult patients with relapsed/refractory (r/r) acute lymphoblastic leukemia. Blood 132, 895–895 (2018). - PubMed
  3. Orlando, E. J. et al. Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia. Nat. Med. 24, 1504–1506 (2018). - PubMed
  4. Shah, N. N. & Fry, T. J. Mechanisms of resistance to CAR T cell therapy. Nat. Rev. Clin. Oncol. 16, 372–385 (2019). - PubMed
  5. Ghorashian, S. et al. Enhanced CAR T cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR. Nat. Med. 25, 1408–1414 (2019). - PubMed
  6. Fry, T. J. et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat. Med. 24, 20–28 (2018). - PubMed
  7. Quist-Paulsen, P. et al. T-cell acute lymphoblastic leukemia in patients 1-45 years treated with the pediatric NOPHO ALL2008 protocol. Leukemia 34, 347–357 (2020). - PubMed
  8. Sellar, R. S. et al. Relapse in teenage and young adult patients treated on a paediatric minimal residual disease stratified ALL treatment protocol is associated with a poor outcome: results from UKALL2003. Br. J. Haematol. 181, 515–522 (2018). - PubMed
  9. Komori, T., Okada, A., Stewart, V. & Alt, F. W. Lack of N regions in antigen receptor variable region genes of TdT-deficient lymphocytes. Science 261, 1171–1175 (1993). - PubMed
  10. Coustan-Smith, E. et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 10, 147–156 (2009). - PubMed
  11. Drexler, H. G., Menon, M. & Minowada, J. Incidence of TdT positivity in cases of leukemia and lymphoma. Acta Haematol. 75, 12–17 (1986). - PubMed
  12. Patel, J. L. et al. The immunophenotype of T-lymphoblastic lymphoma in children and adolescents: a Children’s Oncology Group report. Br. J. Haematol. 159, 454–461 (2012). - PubMed
  13. Bene, M. C. et al. Immunophenotyping of acute leukemia and lymphoproliferative disorders: a consensus proposal of the European LeukaemiaNet Work Package 10. Leukemia 25, 567–574 (2011). - PubMed
  14. Pellin, D. et al. A comprehensive single cell transcriptional landscape of human hematopoietic progenitors. Nat. Commun. 10, 2395 (2019). - PubMed
  15. Monaco, G. et al. RNA-seq signatures normalized by mRNA abundance allow absolute deconvolution of human immune cell types. Cell Rep. 26, 1627–1640 (2019). - PubMed
  16. Ali, M. et al. Induction of neoantigen-reactive T cells from healthy donors. Nat. Protoc. 14, 1926–1943 (2019). - PubMed
  17. Cohen, C. J., Zhao, Y., Zheng, Z., Rosenberg, S. A. & Morgan, R. A. Enhanced antitumor activity of murine-human hybrid T-cell receptor (TCR) in human lymphocytes is associated with improved pairing and TCR/CD3 stability. Cancer Res. 66, 8878–8886 (2006). - PubMed
  18. Jin, B. Y. et al. Engineered T cells targeting E7 mediate regression of human papillomavirus cancers in a murine model. JCI Insight 3, e99488 (2018). - PubMed
  19. Rapoport, A. P. et al. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat. Med. 21, 914–921 (2015). - PubMed
  20. Johnson, L. A. et al. Gene transfer of tumor-reactive TCR confers both high avidity and tumor reactivity to nonreactive peripheral blood mononuclear cells and tumor-infiltrating lymphocytes. J. Immunol. 177, 6548–6559 (2006). - PubMed
  21. Sommermeyer, D. et al. Chimeric antigen receptor-modified T cells derived from defined CD8 - PubMed
  22. Busch, D. H., Fräßle, S. P., Sommermeyer, D., Buchholz, V. R. & Riddell, S. R. Role of memory T cell subsets for adoptive immunotherapy. Semin. Immunol. 28, 28–34 (2016). - PubMed
  23. Bleakley, M. et al. Outcomes of acute leukemia patients transplanted with naive T cell–depleted stem cell grafts. J. Clin. Invest. 125, 2677–2689 (2015). - PubMed
  24. Foster, A. E. et al. Human CD62L - PubMed
  25. Mold, J. E. et al. Cell generation dynamics underlying naive T-cell homeostasis in adult humans. PLoS Biol. 17, e3000383 (2019). - PubMed
  26. Bains, I., Antia, R., Callard, R. & Yates, A. J. Quantifying the development of the peripheral naive CD4 - PubMed
  27. Scherer, L. D., Brenner, M. K. & Mamonkin, M. Chimeric antigen receptors for T-cell malignancies. Front. Oncol. 9, 126 (2019). - PubMed
  28. Cooper, M. L. et al. An ‘off-the-shelf’ fratricide-resistant CAR-T for the treatment of T cell hematologic malignancies. Leukemia 32, 1970–1983 (2018). - PubMed
  29. Gomes-Silva, D. et al. CD7-edited T cells expressing a CD7-specific CAR for the therapy of T-cell malignancies. Blood 130, 285–296 (2017). - PubMed
  30. Sanchez-Martinez, D. et al. Fratricide-resistant CD1a-specific CAR T cells for the treatment of cortical T-cell acute lymphoblastic leukemia. Blood 133, 2291–2304 (2019). - PubMed
  31. Marks, D. I. & Rowntree, C. Management of adults with T-cell lymphoblastic leukemia. Blood 129, 1134–1142 (2017). - PubMed
  32. Cameron, B. J. et al. Identification of a Titin-derived HLA-A1-presented peptide as a cross-reactive target for engineered MAGE A3-directed T cells. Sci. Transl. Med. 5, 197ra103 (2013). - PubMed
  33. Morgan, R. A. et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J. Immunother. 36, 133–151 (2013). - PubMed
  34. Wooldridge, L. et al. A single autoimmune T cell receptor recognizes more than a million different peptides. J. Biol. Chem. 287, 1168–1177 (2012). - PubMed
  35. Robbins, P. F. et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J. Clin. Oncol. 29, 917–924 (2011). - PubMed
  36. Chapuis, A. G. et al. T cell receptor gene therapy targeting WT1 prevents acute myeloid leukemia relapse post-transplant. Nat. Med. 25, 1064–1072 (2019). - PubMed
  37. Stauss, H. J. Immunotherapy with CTLs restricted by nonself MHC. Immunol. Today 20, 180–183 (1999). - PubMed
  38. Wang, Y. et al. How an alloreactive T-cell receptor achieves peptide and MHC specificity. Proc. Natl Acad. Sci. USA 114, E4792–E4801 (2017). - PubMed
  39. Simpson, A. A. et al. Structural and energetic evidence for highly peptide-specific tumor antigen targeting via allo-MHC restriction. Proc. Natl Acad. Sci. USA 108, 21176–21181 (2011). - PubMed
  40. Sadovnikova, E. & Stauss, H. J. Peptide-specific cytotoxic T lymphocytes restricted by nonself major histocompatibility complex class I molecules: reagents for tumor immunotherapy. Proc. Natl Acad. Sci. USA 93, 13114–13118 (1996). - PubMed
  41. Abrahamsen, I. W. et al. Targeting B cell leukemia with highly specific allogeneic T cells with a public recognition motif. Leukemia 24, 1901–1909 (2010). - PubMed
  42. Kumari, S. et al. Alloreactive cytotoxic T cells provide means to decipher the immunopeptidome and reveal a plethora of tumor-associated self-epitopes. Proc. Natl Acad. Sci. USA 111, 403–408 (2014). - PubMed
  43. Amir, A. L. et al. PRAME-specific allo-HLA-restricted T cells with potent antitumor reactivity useful for therapeutic T-cell receptor gene transfer. Clin. Cancer Res. 17, 5615–5625 (2011). - PubMed
  44. Birnbaum, M. E. et al. Deconstructing the peptide-MHC specificity of T cell recognition. Cell 157, 1073–1087 (2014). - PubMed
  45. Kula, T. et al. T-Scan: a genome-wide method for the systematic discovery of T cell isotopes. Cell 178, 1016–1028 (2019). - PubMed
  46. Bentzen, A. K. et al. T cell receptor fingerprinting enables in-depth characterization of the interactions governing recognition of peptide-MHC complexes. Nat. Biotechnol. 36, 1191–1196 (2018). - PubMed
  47. Sigalotti, L. et al. Intratumor heterogeneity of cancer/testis antigens expression in human cutaneous melanoma is methylation-regulated and functionally reverted by 5-aza-2’-deoxycytidine. Cancer Res. 64, 9167–9171 (2004). - PubMed
  48. Tosato, G. & Cohen, J. I. Generation of Epstein–Barr Virus (EBV)-immortalized B cell lines. Curr. Protoc. Immunol. Chapter 7, Unit 7.22 (2007). - PubMed
  49. Toebes, M. et al. Design and use of conditional MHC class I ligands. Nat. Med. 12, 246–251 (2006). - PubMed
  50. Hadrup, S. R. et al. Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers. Nat. Methods 6, 520–526 (2009). - PubMed
  51. Scheper, W. et al. Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers. Nat. Med. 25, 89–94 (2019). - PubMed
  52. Stronen, E. et al. Targeting of cancer neoantigens with donor-derived T cell receptor repertoires. Science 352, 1337–1341 (2016). - PubMed
  53. Linnemann, C. et al. High-throughput identification of antigen-specific TCRs by TCR gene capture. Nat. Med. 19, 1534–1541 (2013). - PubMed
  54. Brochet, X., Lefranc, M. P. & Giudicelli, V. IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis. Nucleic Acids Res. 36, W503–W508 (2008). - PubMed
  55. Ran, F. A. et al. Genome engineering using the CRISPR–Cas9 system. Nat. Protoc. 8, 2281–2308 (2013). - PubMed
  56. Cole, D. K. et al. Structural mechanism underpinning cross-reactivity of a CD8 - PubMed
  57. McMurtrey, C. et al. Toxoplasma gondii peptide ligands open the gate of the HLA class I binding groove. eLife 5, e12556 (2016). - PubMed

Publication Types

Grant support