Display options
Share it on

J Physiol. 2021 Nov 29; doi: 10.1113/JP281058. Epub 2021 Nov 29.

Autonomic control of cerebral blood flow: fundamental comparisons between peripheral and cerebrovascular circulations in humans.

The Journal of physiology

Jodie L Koep, Chloe E Taylor, Jeff S Coombes, Bert Bond, Philip N Ainslie, Tom G Bailey

Affiliations

  1. Physiology and Ultrasound Laboratory in Science and Exercise, Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia.
  2. Children's Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK.
  3. School of Health Sciences, Western Sydney University, Sydney, Australia.
  4. Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada.
  5. School of Nursing, Midwifery and Social Work, The University of Queensland, Brisbane, Queensland, Australia.

PMID: 34842285 DOI: 10.1113/JP281058

Abstract

Understanding the contribution of the autonomic nervous system to cerebral blood flow (CBF) control is challenging, and interpretations are unclear. The identification of calcium channels and adrenoreceptors within cerebral vessels has led to common misconceptions that the function of these receptors and actions mirror those of the peripheral vasculature. This review outlines the fundamental differences and complex actions of cerebral autonomic activation compared with the peripheral circulation. Anatomical differences, including the closed nature of the cerebrovasculature, and differential adrenoreceptor subtypes, density, distribution and sensitivity, provide evidence that measures on peripheral sympathetic nerve activity cannot be extrapolated to the cerebrovasculature. Cerebral sympathetic nerve activity seems to act opposingly to the peripheral circulation, mediated at least in part by changes in intracranial pressure and cerebral blood volume. Additionally, heterogeneity in cerebral adrenoreceptor distribution highlights region-specific autonomic regulation of CBF. Compensatory chemo- and autoregulatory responses throughout the cerebral circulation, and interactions with parasympathetic nerve activity are unique features to the cerebral circulation. This crosstalk between sympathetic and parasympathetic reflexes acts to ensure adequate perfusion of CBF to rising and falling perfusion pressures, optimizing delivery of oxygen and nutrients to the brain, while attempting to maintain blood volume and intracranial pressure. Herein, we highlight the distinct similarities and differences between autonomic control of cerebral and peripheral blood flow, and the regional specificity of sympathetic and parasympathetic regulation within the cerebrovasculature. Future research directions are outlined with the goal to further our understanding of autonomic control of CBF in humans.

© 2021 The Authors. The Journal of Physiology © 2021 The Physiological Society.

Keywords: adrenergic receptors; cerebrovascular regulation; neural control; parasympathetic nerve activity; sympathetic nerve activity

References

  1. Ainslie PN & Brassard P (2014). Why is the neural control of cerebral autoregulation so controversial? F1000prime Reports 6, 14-14. - PubMed
  2. Asano N, Hishiyama S, Ishiyama T, Kotoda M & Matsukawa T (2020). Effects of β1-adrenergic receptor blockade on the cerebral microcirculation in the normal state and during global brain ischemia/reperfusion injury in rabbits. BMC Pharmacology and Toxicology 21, 13. - PubMed
  3. Ayajiki K & Toda N (1992). Regional difference in the response mediated by beta 1-adrenoceptor subtype in bovine cerebral arteries. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 12, 507-513. - PubMed
  4. Baumbach GL & Heistad DD (1983). Effects of sympathetic stimulation and changes in arterial pressure on segmental resistance of cerebral vessels in rabbits and cats. Circ Res 52, 527-533. - PubMed
  5. Bill A & Linder J (1976). Sympathetic control of cerebral blood flow in acute arterial hypertension. Acta Physiol Scand 96, 114-121. - PubMed
  6. Bouma GJ, Muizelaar JP, Bandoh K & Marmarou A (1992). Blood pressure and intracranial pressure-volume dynamics in severe head injury: relationship with cerebral blood flow. J Neurosurg 77, 15-19. - PubMed
  7. Brassard P, Ferland-Dutil H, Smirl JD, Paquette M, Le Blanc O, Malenfant S & Ainslie PN (2017a). Evidence for hysteresis in the cerebral pressure-flow relationship in healthy men. American Journal of Physiology-Heart and Circulatory Physiology 312, H701-H704. - PubMed
  8. Brassard P, Labrecque L, Smirl JD, Tymko MM, Caldwell HG, Hoiland RL, Lucas SJE, Denault AY, Couture EJ & Ainslie PN (2021). Losing the dogmatic view of cerebral autoregulation. Physiol Rep 9, e14982. - PubMed
  9. Brassard P, Tymko MM & Ainslie PN (2017b). Sympathetic control of the brain circulation: appreciating the complexities to better understand the controversy. Autonomic neuroscience : basic & clinical 207, 37-47. - PubMed
  10. Cassaglia PA, Griffiths RI & Walker AM (2008). Sympathetic nerve activity in the superior cervical ganglia increases in response to imposed increases in arterial pressure. American journal of physiology Regulatory, integrative and comparative physiology 294, R1255-R1261. - PubMed
  11. Cassaglia PA, Griffiths RI & Walker AM (2009). Cerebral sympathetic nerve activity has a major regulatory role in the cerebral circulation in REM sleep. J Appl Physiol 106, 1050-1056. - PubMed
  12. Charkoudian N, Joyner MJ, Johnson CP, Eisenach JH, Dietz NM & Wallin BG (2005). Balance between cardiac output and sympathetic nerve activity in resting humans: role in arterial pressure regulation. J Physiol 568, 315-321. - PubMed
  13. Charkoudian N & Rabbitts JA (2009). Sympathetic neural mechanisms in human cardiovascular health and disease. Mayo Clin Proc 84, 822-830. - PubMed
  14. Claassen J, Thijssen DHJ, Panerai RB & Faraci FM (2021). Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation. Physiol Rev 101, 1487-1559. - PubMed
  15. Conway CR, Sheline YI, Chibnall JT, George MS, Fletcher JW & Mintun MA (2006). Cerebral blood flow changes during vagus nerve stimulation for depression. Psychiatry Res 146, 179-184. - PubMed
  16. D'Alecy LG & Rose CJ (1977). Parasympathetic cholinergic control of cerebral blood flow in dogs. Circ Res 41, 324-331. - PubMed
  17. Deegan BM, Cooke JP, Lyons D, ÓLaighin G & Serrador JM (2010). Cerebral autoregulation in the vertebral and middle cerebral arteries during combine head upright tilt and lower body negative pressure in healthy humans. In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 2505-2508. - PubMed
  18. Dessy C & Balligand JL (2010). Beta3-adrenergic receptors in cardiac and vascular tissues emerging concepts and therapeutic perspectives. Adv Pharmacol 59, 135-163. - PubMed
  19. Dietrich S, Smith J, Scherzinger C, Hofmann-Preiß K, Freitag T, Eisenkolb A & Ringler R (2008). A novel transcutaneous vagus nerve stimulation leads to brainstem and cerebral activations measured by functional MRI. Biomedizinische Technik. Biomedical engineering 53, 104-111. - PubMed
  20. Drummond JC, Dao AV, Roth DM, Cheng CR, Atwater BI, Minokadeh A, Pasco LC & Patel PM (2008). Effect of dexmedetomidine on cerebral blood flow velocity, cerebral metabolic rate, and carbon dioxide response in normal humans. Anesthesiology 108, 225-232. - PubMed
  21. Edvinsson L (1982). Sympathetic control of cerebral circulation. Trends Neurosci 5, 425-429. - PubMed
  22. Edvinsson L & Owman C (1974). Pharmacological characterization of adrenergic alpha and beta receptors mediating the vasomotor responses of cerebral arteries in vitro. Circ Res 35, 835-849. - PubMed
  23. Edvinsson L, Owman C & Siesjö B (1976a). Physiological role of cerebrovascular sympathetic nerves in the autoregulation of cerebral blood flow. Brain Res 117, 519-523. - PubMed
  24. Edvinsson L, Owman C & Sjoberg NO (1976b). Autonomic nerves, mast cells, and amine receptors in human brain vessels. A histochemical and pharmacological study. Brain Res 115, 377-393. - PubMed
  25. Fernandes IA, Mattos JD, Campos MO, Machado AC, Rocha MP, Rocha NG, Vianna LC & Nobrega AC (2016). Selective alpha1-adrenergic blockade disturbs the regional distribution of cerebral blood flow during static handgrip exercise. American journal of physiology Heart and circulatory physiology 310, H1541-H1548. - PubMed
  26. Filosa JA & Iddings JA (2013). Astrocyte regulation of cerebral vascular tone. American journal of physiology Heart and circulatory physiology 305, H609-H619. - PubMed
  27. Filosa JA, Morrison HW, Iddings JA, Du W & Kim KJ (2016). Beyond neurovascular coupling, role of astrocytes in the regulation of vascular tone. Neuroscience 323, 96-109. - PubMed
  28. Gezalian MM, Mangiacotti L, Rajput P, Sparrow N, Schlick K & Lahiri S (2020). Cerebrovascular and neurological perspectives on adrenoceptor and calcium channel modulating pharmacotherapies. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 271678×20972869. - PubMed
  29. Gomes C, Henning M, Persson B & Trolin G (1978). Interaction of alpha- and beta-adrenergic receptor blocking agents: circulatory effects in the conscious rat. Clin Exp Hypertens 1, 141-165. - PubMed
  30. Gordon GR, Choi HB, Rungta RL, Ellis-Davies GC & MacVicar BA (2008). Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 456, 745-749. - PubMed
  31. Gordon GRJ, MacVicar BA & Mulligan SJ (2009). Glia Control of Blood Flow. In Encyclopedia of Neuroscience, ed. Squire LR, pp. 737-742. Academic Press, Oxford. - PubMed
  32. Gould IG, Tsai P, Kleinfeld D & Linninger A (2017). The capillary bed offers the largest hemodynamic resistance to the cortical blood supply. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 37, 52-68. - PubMed
  33. Guild SJ, Saxena UA, McBryde FD, Malpas SC & Ramchandra R (2018). Intracranial pressure influences the level of sympathetic tone. American journal of physiology Regulatory, integrative and comparative physiology 315, R1049-R1053. - PubMed
  34. Guimarães S & Moura D (2001). Vascular adrenoceptors: an update. Pharmacol Rev 53, 319-356. - PubMed
  35. Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, O'Farrell FM, Buchan AM, Lauritzen M & Attwell D (2014). Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508, 55-60. - PubMed
  36. Hamner JW & Tan Can O (2014). Relative contributions of sympathetic, cholinergic, and myogenic mechanisms to cerebral autoregulation. Stroke 45, 1771-1777. - PubMed
  37. Hamner JW, Tan CO, Lee K, Cohen MA & Taylor JA (2010). Sympathetic control of the cerebral vasculature in humans. Stroke 41, 102-109. - PubMed
  38. Hamner JW, Tan CO, Tzeng Y-C & Taylor JA (2012). Cholinergic control of the cerebral vasculature in humans. J Physiol 590, 6343-6352. - PubMed
  39. Hare GMT, Worrall JMA, Baker AJ, Liu E, Sikich N & Mazer CD (2006). β2 Adrenergic antagonist inhibits cerebral cortical oxygen delivery after severe haemodilution in rats. BJA: British Journal of Anaesthesia 97, 617-623. - PubMed
  40. Hart E, Charkoudian N, Wallin BG, Curry TB, Eisenach J & Joyner MJ (2011). Sex and ageing differences in resting arterial pressure regulation: the role of the β-adrenergic receptors. J Physiol 589, 5285-5297. - PubMed
  41. Heistad DD, Marcus ML & Gross PM (1978). Effects of sympathetic nerves on cerebral vessels in dog, cat, and monkey. Am J Physiol 235, H544-H552. - PubMed
  42. Henry TR, Votaw JR, Pennell PB, Epstein CM, Bakay RAE, Faber TL, Grafton ST & Hoffman JM (1999). Acute blood flow changes and efficacy of vagus nerve stimulation in partial epilepsy. Neurology 52, 1166. - PubMed
  43. Hoiland RL & Ainslie PN (2016). CrossTalk proposal: the middle cerebral artery diameter does change during alterations in arterial blood gases and blood pressure. J Physiol 594, 4073-4075. - PubMed
  44. Hoiland RL, Fisher JA & Ainslie PN (2019). Regulation of the cerebral circulation by arterial carbon dioxide. Compr Physiol 9, 1101-1154. - PubMed
  45. Hotta H (2016). Chapter 1 - Neurogenic control of parenchymal arterioles in the cerebral cortex. In Progress in Brain Research, ed. Masamoto K, Hirase H & Yamada K, pp. 3-39. Elsevier. - PubMed
  46. Howarth C (2014). The contribution of astrocytes to the regulation of cerebral blood flow. Frontiers in neuroscience 8, 103-103. - PubMed
  47. Ide K, Boushel R, Sorensen HM, Fernandes A, Cai Y, Pott F & Secher NH (2000). Middle cerebral artery blood velocity during exercise with beta-1 adrenergic and unilateral stellate ganglion blockade in humans. Acta Physiol Scand 170, 33-38. - PubMed
  48. Jeng JS, Yip PK, Huang SJ & Kao MC (1999). Changes in hemodynamics of the carotid and middle cerebral arteries before and after endoscopic sympathectomy in patients with palmar hyperhidrosis: preliminary results. J Neurosurg 90, 463-467. - PubMed
  49. Jensen LJ, Nielsen MS, Salomonsson M & Sørensen CM (2017). T-type Ca(2+) channels and autoregulation of local blood flow. Channels (Austin) 11, 183-195. - PubMed
  50. Jordan J, Shannon John R, Diedrich A, Black B, Costa F, Robertson D & Biaggioni I (2000). Interaction of carbon dioxide and sympathetic nervous system activity in the regulation of cerebral perfusion in humans. Hypertension (Dallas, Tex : 1979) 36, 383-388. - PubMed
  51. Joyner MJ & Casey DP (2015). Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs. Physiol Rev 95, 549-601. - PubMed
  52. Karimi Galougahi K, Liu CC, Garcia A, Gentile C, Fry NA, Hamilton EJ, Hawkins CL & Figtree GA (2016). β3 adrenergic stimulation restores nitric oxide/redox balance and enhances endothelial function in hyperglycemia. J Am Heart Assoc 5, e002824. - PubMed
  53. Kay VL & Rickards CA (2015). The role of cerebral oxygenation and regional cerebral blood flow on tolerance to central hypovolemia. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 310, R375-R383. - PubMed
  54. Kety SS & Schmidt CF (1946). Effects of alterations in the arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. Fed Proc 5, 55. - PubMed
  55. Kimmerly DS, Tutungi E, Wilson TD, Serrador JM, Gelb AW, Hughson RL & Shoemaker JK (2003). Circulating norepinephrine and cerebrovascular control in conscious humans. Clin Physiol Funct Imaging 23, 314-319. - PubMed
  56. Kiowski W, Hulthén UL, Ritz R & Bühler FR (1983). α2 Adrenoceptor-mediated vasoconstriction of arteries. Clin Pharmacol Ther 34, 565-569. - PubMed
  57. Kneale BJ, Chowienczyk PJ, Brett SE, Coltart DJ & Ritter JM (2000). Gender differences in sensitivity to adrenergic agonists of forearm resistance vasculature. J Am Coll Cardiol 36, 1233-1238. - PubMed
  58. Koeppen BJB & physiology: l (2010). In Koeppen BM, Stanton BA. - PubMed
  59. Kuo IY, Ellis A, Seymour VAL, Sandow SL & Hill CE (2010). Dihydropyridine-insensitive calcium currents contribute to function of small cerebral arteries. Journal of Cerebral Blood Flow & Metabolism 30, 1226-1239. - PubMed
  60. Labrecque L, Drapeau A, Rahimaly K, Imhoff S & Brassard P (2021a). Dynamic cerebral autoregulation and cerebrovascular carbon dioxide reactivity in middle and posterior cerebral arteries in young endurance-trained women. Journal of applied physiology (Bethesda, Md : 1985) 130, 1724-1735. - PubMed
  61. Labrecque L, Smirl JD & Brassard P (2021b). Utilization of the repeated squat-stand model for studying the directional sensitivity of the cerebral pressure-flow relationship. Journal of applied physiology (Bethesda, Md : 1985) 131, 927-936. - PubMed
  62. Lee HW, Caldwell JE, Dodson B, Talke P & Howley J (1997). The effect of clonidine on cerebral blood flow velocity, carbon dioxide cerebral vasoreactivity, and response to increased arterial pressure in human volunteers. Anesthesiology 87, 553-558. - PubMed
  63. Lewis NCS, Ainslie PN, Atkinson G, Jones H, Grant EJM & Lucas SJE (2012). Initial orthostatic hypotension and cerebral blood flow regulation: effect of α1-adrenoreceptor activity. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 304, R147-R154. - PubMed
  64. Lewis Nia CS, Smith Kurt J, Bain Anthony R, Wildfong Kevin W, Numan T & Ainslie Philip N (2015). Impact of transient hypotension on regional cerebral blood flow in humans. Clin Sci 129, 169. - PubMed
  65. Linden L (1955). The effect of stellate ganglion block on cerebral circulation in cerebrovascular accidents. Acta Med Scand Suppl 301, 1-110. - PubMed
  66. Liu X, Zimmermann LL, Ho N, Vespa P, Liao X & Hu X (2019). Cerebral vascular changes during acute intracranial pressure drop. Neurocritical care 30, 635-644. - PubMed
  67. Long KM & Kirby R (2008). An update on cardiovascular adrenergic receptor physiology and potential pharmacological applications in veterinary critical care. Journal of Veterinary Emergency and Critical Care 18, 2-25. - PubMed
  68. Madsen PL, Sperling BK, Warming T, Schmidt JF, Secher NH, Wildschiodtz G, Holm S & Lassen NA (1993). Middle cerebral artery blood velocity and cerebral blood flow and O2 uptake during dynamic exercise. J Appl Physiol 74, 245-250. - PubMed
  69. Maekawa T, Cho S, Fukusaki M, Shibata O & Sumikawa K (1999). Effects of clonidine on human middle cerebral artery flow velocity and cerebrovascular CO2 response during sevoflurane anesthesia. J Neurosurg Anesthesiol 11, 173-177. - PubMed
  70. McDonald TF, Pelzer S, Trautwein W & Pelzer DJ (1994). Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. Physiol Rev 74, 365-507. - PubMed
  71. Merrill CA, Jonsson MA, Minthon L, Ejnell H, H CsS, Blennow K, Karlsson M, Nordlund A, Rolstad S, Warkentin S, Ben-Menachem E & Sjögren MJ (2006). Vagus nerve stimulation in patients with Alzheimer's disease: additional follow-up results of a pilot study through 1 year. J Clin Psychiatry 67, 1171-1178. - PubMed
  72. Mitchell DA, Lambert G, Secher NH, Raven PB, van Lieshout J & Esler MD (2009). Jugular venous overflow of noradrenaline from the brain: a neurochemical indicator of cerebrovascular sympathetic nerve activity in humans. J Physiol 587, 2589-2597. - PubMed
  73. Mitsis GD, Zhang R, Levine BD, Tzanalaridou E, Katritsis DG & Marmarelis VZ (2009). Autonomic neural control of cerebral hemodynamics. IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society 28, 54-62. - PubMed
  74. Mueller SM, Heistad DD & Marcus ML (1977). Total and regional cerebral blood flow during hypotension, hypertension, and hypocapnia. Effect of sympathetic denervation in dogs. Circ Res 41, 350-356. - PubMed
  75. Nie Y, Song R, Chen W, Qin Z, Zhang J & Tang J (2016). Effects of stellate ganglion block on cerebrovascular vasodilation in elderly patients and patients with subarachnoid haemorrhage. Br J Anaesth 117, 131-132. - PubMed
  76. Numan T, Bain AR, Hoiland RL, Smirl JD, Lewis NC & Ainslie PN (2014). Static autoregulation in humans: a review and reanalysis. Med Eng Phys 36, 1487-1495. - PubMed
  77. Ogawa Y, Iwasaki K, Aoki K, Kojima W, Kato J & Ogawa S (2008). Dexmedetomidine weakens dynamic cerebral autoregulation as assessed by transfer function analysis and the thigh cuff method. Anesthesiology 109, 642-650. - PubMed
  78. Ogoh S, Brothers RM, Eubank WL & Raven PB (2008). Autonomic neural control of the cerebral vasculature: acute hypotension. Stroke 39, 1979-1987. - PubMed
  79. Ogoh S, Dalsgaard MK, Secher NH & Raven PB (2007). Dynamic blood pressure control and middle cerebral artery mean blood velocity variability at rest and during exercise in humans. Acta physiologica (Oxford, England) 191, 3-14. - PubMed
  80. Ogoh S, Sato K, Akimoto T, Oue A, Hirasawa A & Sadamoto T (2010). Dynamic cerebral autoregulation during and after handgrip exercise in humans. Journal of applied physiology (Bethesda, Md : 1985) 108, 1701-1705. - PubMed
  81. Ogoh S, Sato K, Okazaki K, Miyamoto T, Hirasawa A, Sadamoto T & Shibasaki M (2015). Blood flow in internal carotid and vertebral arteries during graded lower body negative pressure in humans. Exp Physiol 100, 259-266. - PubMed
  82. Ottaviani MM, Wright L, Dawood T & Macefield VG (2020). In vivo recordings from the human vagus nerve using ultrasound-guided microneurography. J Physiol 598, 3569-3576. - PubMed
  83. Owman C, Edvinsson L & Nielsen KC (1974). Autonomic neuroreceptor mechanisms in brain vessels. Blood Vessels 11, 2-31. - PubMed
  84. Panerai RB (2003). The critical closing pressure of the cerebral circulation. Med Eng Phys 25, 621-632. - PubMed
  85. Paulson OB, Strandgaard S & Edvinsson L (1990). Cerebral autoregulation. Cerebrovasc Brain Metab Rev 2, 161-192. - PubMed
  86. Peppiatt CM, Howarth C, Mobbs P & Attwell D (2006). Bidirectional control of CNS capillary diameter by pericytes. Nature 443, 700-704. - PubMed
  87. Petersen LG, Lawley JS, Lilja-Cyron A, Petersen JCG, Howden EJ, Sarma S, Cornwell WK, 3rd, Zhang R, Whitworth LA, Williams MA, Juhler M & Levine BD (2019). Lower body negative pressure to safely reduce intracranial pressure. J Physiol 597, 237-248. - PubMed
  88. Piechnik SK, Chiarelli PA & Jezzard P (2008). Modelling vascular reactivity to investigate the basis of the relationship between cerebral blood volume and flow under CO2 manipulation. Neuroimage 39, 107-118. - PubMed
  89. Purkayastha S, Saxena A, Eubank WL, Hoxha B & Raven PB (2013). α1-Adrenergic receptor control of the cerebral vasculature in humans at rest and during exercise. Exp Physiol 98, 451-461. - PubMed
  90. Reehal N, Cummings S, Mullen MT, Baker WB, Kung D, Tackett W & Favilla CG (2021). Differentiating dynamic cerebral autoregulation across vascular territories. Front Neurol 12, 653167. - PubMed
  91. Roloff EV, Tomiak-Baquero AM, Kasparov S & Paton JF (2016). Parasympathetic innervation of vertebrobasilar arteries: is this a potential clinical target? J Physiol 594, 6463-6485. - PubMed
  92. Rossen R, Kabat H & Anderson JP (1943). Acute arrest of cerebral circulation in man. Archives of Neurology & Psychiatry 50, 510-528. - PubMed
  93. Saleem S, Teal PD, Howe CA, Tymko MM, Ainslie PN & Tzeng YC (2018). Is the Cushing mechanism a dynamic blood pressure-stabilizing system? Insights from Granger causality analysis of spontaneous blood pressure and cerebral blood flow. American journal of physiology Regulatory, integrative and comparative physiology 315, R484-R495. - PubMed
  94. Sander CY, Hansen HD & Wey H-Y (2020). Advances in simultaneous PET/MR for imaging neuroreceptor function. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 40, 1148-1166. - PubMed
  95. Sándor P (1999). Nervous control of the cerebrovascular system: doubts and facts. Neurochem Int 35, 237-259. - PubMed
  96. Santizo R, Baughman VL & Pelligrino DA (2000). Relative contributions from neuronal and endothelial nitric oxide synthases to regional cerebral blood flow changes during forebrain ischemia in rats. Neuroreport 11, 1549-1553. - PubMed
  97. Sato K, Fisher JP, Seifert T, Overgaard M, Secher NH & Ogoh S (2012). Blood flow in internal carotid and vertebral arteries during orthostatic stress. Exp Physiol 97, 1272-1280. - PubMed
  98. Savitz SI, Erhardt JA, Anthony JV, Gupta G, Li X, Barone FC & Rosenbaum DM (2000). The novel β-blocker, carvedilol, provides neuroprotection in transient focal stroke. Journal of Cerebral Blood Flow & Metabolism 20, 1197-1204. - PubMed
  99. Schaeffer S & Iadecola C (2021). Revisiting the neurovascular unit. Nat Neurosci 24, 1198-1209. - PubMed
  100. Scheinberg P, Blackburn I, Saslaw M, Rich M & Baum G (1953). Cerebral circulation and metabolism in pulmonary emphysema and fibrosis with observations on the effects of mild exercise. J Clin Invest 32, 720-728. - PubMed
  101. Schmidt EA, Czosnyka Z, Momjian S, Czosnyka M, Bech RA & Pickard JD (2005). Intracranial baroreflex yielding an early cushing response in human. Acta Neurochir Suppl 95, 253-256. - PubMed
  102. Schmidt EA, Despas F, Pavy-Le Traon A, Czosnyka Z, Pickard JD, Rahmouni K, Pathak A & Senard JM (2018). Intracranial pressure is a determinant of sympathetic activity. Front Physiol 9, 11. - PubMed
  103. Scremin OU, Sonnenschein RR & Rubinstein EH (1982). Cholinergic cerebral vasodilatation in the rabbit: absence of concomitant metabolic activation. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 2, 241-247. - PubMed
  104. Seifert T, Rasmussen P, Secher NH & Nielsen HB (2009). Cerebral oxygenation decreases during exercise in humans with beta-adrenergic blockade. Acta physiologica (Oxford, England) 196, 295-302. - PubMed
  105. Shenkin HA (1969). Cervical sympathectomy on patients with occlusive cerebrovascular disease. Archives of surgery (Chicago, Ill : 1960) 98, 317-320. - PubMed
  106. Shenkin HA, Cabieses F & Van Den Noordt G (1951). The effect of bilateral stellectomy upon the cerebral circulation of man. J Clin Invest 30, 90-93. - PubMed
  107. Shoemaker JK, Badrov MB, Al-Khazraji BK & Jackson DN (2015). Neural control of vascular function in skeletal muscle. Compr Physiol 6, 303-329. - PubMed
  108. Shoemaker JK, Klassen SA, Badrov MB & Fadel PJ (2018). Fifty years of microneurography: learning the language of the peripheral sympathetic nervous system in humans. J Neurophysiol 119, 1731-1744. - PubMed
  109. Sjögren MJ, Hellström PT, Jonsson MA, Runnerstam M, Silander HC & Ben-Menachem E (2002). Cognition-enhancing effect of vagus nerve stimulation in patients with Alzheimer's disease: a pilot study. J Clin Psychiatry 63, 972-980. - PubMed
  110. Smirl JD, Tzeng YC, Monteleone BJ & Ainslie PN (2014). Influence of cerebrovascular resistance on the dynamic relationship between blood pressure and cerebral blood flow in humans. Journal of applied physiology (Bethesda, Md : 1985) 116, 1614-1622. - PubMed
  111. Smith BA, Clayton EW & Robertson D (2011). Experimental arrest of cerebral blood flow in human subjects: the red wing studies revisited. Perspect Biol Med 54, 121-131. - PubMed
  112. Sundlof G & Wallin BG (1978). Human muscle nerve sympathetic activity at rest. Relationship to blood pressure and age. J Physiol 274, 621-637. - PubMed
  113. Suzuki J, Iwabuchi T & Hori S (1975). Cervical sympathectomy for cerebral vasospasm after aneurysm rupture. Neurol Med Chir (Tokyo) 15pt1(pt 1), 41-50. - PubMed
  114. Suzuki N & Hardebo JE (1993). The cerebrovascular parasympathetic innervation. Cerebrovasc Brain Metab Rev 5, 33-46. - PubMed
  115. Tameem A & Krovvidi H (2013). Cerebral physiology. Continuing Education in Anaesthesia Critical Care & Pain 13, 113-118. - PubMed
  116. ter Laan M, van Dijk JMC, Elting JWJ, Staal MJ & Absalom AR (2013). Sympathetic regulation of cerebral blood flow in humans: a review. BJA: British Journal of Anaesthesia 111, 361-367. - PubMed
  117. Thomas GD (2011). Neural control of the circulation. Adv Physiol Educ 35, 28-32. - PubMed
  118. Thomas SN, Schroeder T, Secher NH & Mitchell JH (1989). Cerebral blood flow during submaximal and maximal dynamic exercise in humans. Journal of applied physiology (Bethesda, Md : 1985) 67, 744-748. - PubMed
  119. Traystman RJ (2017). Chapter 1 - Cerebrovascular anatomy and hemodynamics. In Primer on Cerebrovascular Diseases (Second Edition), ed. Caplan LR, Biller J, Leary MC, Lo EH, Thomas AJ, Yenari M & Zhang JH, pp. 5-12. Academic Press, San Diego. - PubMed
  120. Treggiari MM, Romand J-A, Martin J-B, Reverdin A, Rüfenacht DA & de Tribolet N (2003). Cervical sympathetic block to reverse delayed ischemic neurological deficits after aneurysmal subarachnoid hemorrhage. Stroke 34, 961-967. - PubMed
  121. Trochu JN, Leblais V, Rautureau Y, Bévérelli F, Le Marec H, Berdeaux A & Gauthier C (1999). Beta 3-adrenoceptor stimulation induces vasorelaxation mediated essentially by endothelium-derived nitric oxide in rat thoracic aorta. Br J Pharmacol 128, 69-76. - PubMed
  122. Tucker WD, Arora Y, Mahajan K (2021). Anatomy, Blood Vessels. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. PMID: 29262226. - PubMed
  123. Tymko MM, Fraser GM, Matenchuk BA, Day TA, Boulé NG, Davenport MH & Steinback CD (2020). Determining whether sympathetic nervous activity influences cerebral blood velocity at rest: a novel approach. Clin Auton Res 30, 357-359. - PubMed
  124. Tymko MM, Rickards CA, Skow RJ, Ingram-Cotton NC, Howatt MK & Day TA (2016). The effects of superimposed tilt and lower body negative pressure on anterior and posterior cerebral circulations. Physiol Rep 4, e12957. - PubMed
  125. Tzeng YC, Willie CK, Atkinson G, Lucas SJ, Wong A & Ainslie PN (2010). Cerebrovascular regulation during transient hypotension and hypertension in humans. Hypertension (Dallas, Tex : 1979) 56, 268-273. - PubMed
  126. Umeyama T, Kugimiya T, Ogawa T, Kandori Y, Ishizuka A & Hanaoka K (1995). Changes in cerebral blood flow estimated after stellate ganglion block by single photon emission computed tomography. J Auton Nerv Syst 50, 339-346. - PubMed
  127. Van Laere K, Vonck K, Boon P, Brans B, Vandekerckhove T & Dierckx R (2000). Vagus nerve stimulation in refractory epilepsy: SPECT activation study. J Nucl Med 41, 1145-1154. - PubMed
  128. Wallin BG (2006). Regulation of sympathetic nerve traffic to skeletal muscle in resting humans. Clinical autonomic research : official journal of the Clinical Autonomic Research Society 16, 262-269. - PubMed
  129. Washio T, Sasaki H & Ogoh S (2017). Transcranial Doppler-determined change in posterior cerebral artery blood flow velocity does not reflect vertebral artery blood flow during exercise. American journal of physiology Heart and circulatory physiology 312, H827-H831. - PubMed
  130. Washio T, Watanabe H & Ogoh S (2020). Dynamic cerebral autoregulation in anterior and posterior cerebral circulation during cold pressor test. The Journal of Physiological Sciences 70, 1. - PubMed
  131. Wendel C, Scheibe R, Wagner S, Tangemann W, Henkes H, Ganslandt O & Schiff J-H (2020). Decrease of blood flow velocity in the middle cerebral artery after stellate ganglion block following aneurysmal subarachnoid hemorrhage: a potential vasospasm treatment? Journal of Neurosurgery JNS 133, 773-779. - PubMed
  132. Williams LR & Leggett RW (1989). Reference values for resting blood flow to organs of man. Clinical physics and physiological measurement : an official journal of the Hospital Physicists' Association, Deutsche Gesellschaft fur Medizinische Physik and the European Federation of Organisations for Medical Physics 10, 187-217. - PubMed
  133. Willie CK, Tzeng YC, Fisher JA & Ainslie PN (2014). Integrative regulation of human brain blood flow. J Physiol 592, 841-859. - PubMed
  134. Yokoyama K, Kishida T & Sugiyama K (2004). Stellate ganglion block and regional cerebral blood volume and oxygenation. Can J Anaesth 51, 515-516. - PubMed
  135. Zhang J, Nie Y, Pang Q, Zhang X, Wang Q & Tang J (2021). Effects of stellate ganglion block on early brain injury in patients with subarachnoid hemorrhage: a randomised control trial. BMC anesthesiology 21, 23. - PubMed
  136. Zhang R, Crandall CG & Levine BD (2004). Cerebral hemodynamics during the Valsalva maneuver: insights from ganglionic blockade. Stroke 35, 843-847. - PubMed
  137. Zhang R, Zuckerman JH, Iwasaki K, Wilson TE, Crandall CG & Levine BD (2002). Autonomic neural control of dynamic cerebral autoregulation in humans. Circulation 106, 1814-1820. - PubMed
  138. Zhang Y & Kimelberg HK (2005). Neuroprotection by alpha 2-adrenergic agonists in cerebral ischemia. Curr Neuropharmacol 3, 317-323. - PubMed
  139. Zobl EG, Talmers FN, Christensen RC & Baer LJ (1965). Effect of exercise on the cerebral circulation and metabolism. J Appl Physiol 20, 1289-1293. - PubMed
  140. Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T & Carmignoto G (2003). Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 6, 43-50. - PubMed
  141. Zornow MH, Maze M, Dyck JB & Shafer SL (1993). Dexmedetomidine decreases cerebral blood flow velocity in humans. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 13, 350-353. - PubMed

Publication Types

Grant support