Display options
Share it on

Chin Neurosurg J. 2021 Dec 01;7(1):44. doi: 10.1186/s41016-021-00260-2.

Underlying mechanism of hemodynamics and intracranial aneurysm.

Chinese neurosurgical journal

Haishuang Tang, Qingsong Wang, Fengfeng Xu, Xiaoxi Zhang, Zhangwei Zeng, Yazhou Yan, Zhiwen Lu, Gaici Xue, Qiao Zuo, Yin Luo, Jianmin Liu, Qinghai Huang

Affiliations

  1. Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China.
  2. Naval Medical Center of PLA, Naval Military Medical University, Shanghai, 200050, People's Republic of China.
  3. Department of Cardiology, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.
  4. Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China. [email protected].
  5. Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China. [email protected].

PMID: 34847937 PMCID: PMC8638472 DOI: 10.1186/s41016-021-00260-2

Abstract

In modern society, subarachnoid hemorrhage, mostly caused by intracranial aneurysm rupture, is accompanied by high disability and mortality rate, which has become a major threat to human health. Till now, the etiology of intracranial aneurysm has not been entirely clarified. In recent years, more and more studies focus on the relationship between hemodynamics and intracranial aneurysm. Under the physiological condition, the mechanical force produced by the stable blood flow in the blood vessels keeps balance with the structure of the blood vessels. When the blood vessels are stimulated by the continuous abnormal blood flow, the functional structure of the blood vessels changes, which becomes the pathophysiological basis of the inflammation and atherosclerosis of the blood vessels and further promotes the occurrence and development of the intracranial aneurysm. This review will focus on the relationship between hemodynamics and intracranial aneurysms, will discuss the mechanism of occurrence and development of intracranial aneurysms, and will provide a new perspective for the research and treatment of intracranial aneurysms.

© 2021. The Author(s).

Keywords: Atherosclerosis; Hemodynamics; Inflammation; Intracranial aneurysm

References

  1. J Am Coll Cardiol. 1998 Jul;32(1):128-34 - PubMed
  2. Kidney Int Suppl. 1998 Sep;67:S100-8 - PubMed
  3. Stroke. 2008 Jul;39(7):2085-90 - PubMed
  4. Neurosurg Rev. 2018 Jan;41(1):87-94 - PubMed
  5. Ann Transl Med. 2020 Jan;8(1):16 - PubMed
  6. Trends Cardiovasc Med. 2008 Aug;18(6):228-32 - PubMed
  7. J Stroke Cerebrovasc Dis. 2018 Jan;27(1):44-52 - PubMed
  8. Adv Exp Med Biol. 2018;1097:83-104 - PubMed
  9. AJNR Am J Neuroradiol. 2014 Oct;35(10):1849-57 - PubMed
  10. J Biomech Eng. 2018 Aug 1;140(8): - PubMed
  11. Ann Intern Med. 2013 Oct 15;159(8):514-21 - PubMed
  12. Clin Neuroradiol. 2019 Jun;29(2):285-293 - PubMed
  13. World Neurosurg. 2017 Jan;97:661-668.e7 - PubMed
  14. J Cereb Blood Flow Metab. 2014 Mar;34(3):415-24 - PubMed
  15. AJNR Am J Neuroradiol. 2011 Apr;32(4):772-7 - PubMed
  16. Biomed Eng Online. 2018 Jan 16;17(1):5 - PubMed
  17. Magn Reson Imaging. 2018 May;48:62-69 - PubMed
  18. Am J Physiol Heart Circ Physiol. 2016 Sep 1;311(3):H645-53 - PubMed
  19. Stroke. 1996 Nov;27(11):1974-80 - PubMed
  20. Kidney Int. 2009 Jul;76(2):149-68 - PubMed
  21. Lancet Neurol. 2011 Jul;10(7):626-36 - PubMed
  22. Front Physiol. 2020 May 12;11:454 - PubMed
  23. Cardiovasc Drugs Ther. 2015 Feb;29(1):75-88 - PubMed
  24. Genet Mol Res. 2015 Apr 28;14(2):4276-81 - PubMed
  25. Dtsch Arztebl Int. 2017 Mar 31;114(13):226-236 - PubMed
  26. Arterioscler Thromb Vasc Biol. 2014 Aug;34(8):1731-8 - PubMed
  27. J Clin Neurosci. 2011 Oct;18(10):1285-8 - PubMed
  28. World Neurosurg. 2019 Dec;132:e775-e782 - PubMed
  29. Magnes Trace Elem. 1991-1992;10(2-4):182-92 - PubMed
  30. PLoS One. 2018 Jan 16;13(1):e0191287 - PubMed
  31. Clin Neurol Neurosurg. 2020 Jun;193:105775 - PubMed
  32. Neurosurgery. 2009 Jul;65(1):169-77; discussion 177-8 - PubMed
  33. J Neurointerv Surg. 2018 Feb;10(2):118-121 - PubMed
  34. J Stroke Cerebrovasc Dis. 2019 Aug;28(8):2221-2227 - PubMed
  35. Antioxid Redox Signal. 2017 Jun 1;26(16):917-935 - PubMed
  36. J Biomech. 2008;41(1):11-9 - PubMed
  37. Medicine (Baltimore). 2015 Jan;94(4):e452 - PubMed
  38. Eur J Radiol. 2013 Oct;82(10):1606-17 - PubMed
  39. Stroke. 2019 Jun;50(6):1570-1573 - PubMed
  40. J Biol Chem. 2005 Mar 25;280(12):11185-91 - PubMed
  41. Sci Rep. 2017 Jul 13;7(1):5331 - PubMed
  42. Microvasc Res. 2003 May;65(3):137-44 - PubMed
  43. Anat Sci Int. 2008 Jun;83(2):96-106 - PubMed
  44. Stroke. 2007 Jun;38(6):1924-31 - PubMed
  45. Arterioscler Thromb Vasc Biol. 1998 May;18(5):708-16 - PubMed
  46. Comput Methods Biomech Biomed Engin. 2013;16(1):33-53 - PubMed
  47. AJNR Am J Neuroradiol. 2011 Jan;32(1):145-51 - PubMed
  48. World Neurosurg. 2017 Sep;105:632-642 - PubMed
  49. Stroke. 2002 Jul;33(7):1911-5 - PubMed
  50. Surg Neurol Int. 2018 Jul 26;9:150 - PubMed
  51. BMC Neurol. 2016 Nov 18;16(1):231 - PubMed
  52. Thromb Haemost. 2016 Mar;115(3):484-92 - PubMed
  53. World Neurosurg. 2018 Jul;115:234-244 - PubMed
  54. Data Brief. 2019 Jul 19;25:104293 - PubMed
  55. Eur J Clin Invest. 2018 Sep;48(9):e12992 - PubMed
  56. Stroke. 2003 Dec;34(12):2980-4 - PubMed
  57. Curr Protein Pept Sci. 2019;20(8):789-798 - PubMed
  58. Neurosurgery. 2016 Apr;78(4):510-20 - PubMed

Publication Types

Grant support