Display options
Share it on

mBio. 2021 Aug 31;12(4):e0136821. doi: 10.1128/mBio.01368-21. Epub 2021 Aug 03.

Sulfation of Arabinogalactan Proteins Confers Privileged Nutrient Status to Bacteroides plebeius.

mBio

Jose Munoz-Munoz, Didier Ndeh, Pedro Fernandez-Julia, Gemma Walton, Bernard Henrissat, Harry J Gilbert

Affiliations

  1. Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom.
  2. Microbial Enzymology Group, Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom.
  3. Department of Food and Nutritional Sciences, Whiteknights, University of Reading, Reading, United Kingdom.
  4. DTU Bioengineering, Technical University of Denmark, Lyngby, Denmark.
  5. King Abdulaziz University, Department of Biological Sciences, Jeddah, Saudi Arabia.

PMID: 34340552 PMCID: PMC8406133 DOI: 10.1128/mBio.01368-21

Abstract

The human gut microbiota (HGM) contributes to the physiology and health of its host. The health benefits provided by dietary manipulation of the HGM require knowledge of how glycans, the major nutrients available to this ecosystem, are metabolized. Arabinogalactan proteins (AGPs) are a ubiquitous feature of plant polysaccharides available to the HGM. Although the galactan backbone and galactooligosaccharide side chains of AGPs are conserved, the decorations of these structures are highly variable. Here, we tested the hypothesis that these variations in arabinogalactan decoration provide a selection mechanism for specific

Keywords: Bacteroides; arabinogalactan; glycan-degrading enzymes; human microbiota; microbial ecology; privileged nutrient; sulfatases

References

  1. Nat Microbiol. 2018 Nov;3(11):1314-1326 - PubMed
  2. Nature. 2018 May;557(7705):434-438 - PubMed
  3. Nat Commun. 2019 May 3;10(1):2043 - PubMed
  4. Cell. 2012 Mar 16;148(6):1258-70 - PubMed
  5. J Agric Food Chem. 2007 Dec 26;55(26):10720-8 - PubMed
  6. J Bacteriol. 2017 Jul 11;199(15): - PubMed
  7. Carbohydr Res. 1995 Nov 7;277(1):135-43 - PubMed
  8. Nature. 2013 Dec 19;504(7480):451-5 - PubMed
  9. Glycobiology. 2009 Mar;19(3):212-28 - PubMed
  10. Biochem J. 1962 Aug;84:411-6 - PubMed
  11. ACS Chem Biol. 2017 May 19;12(5):1269-1280 - PubMed
  12. Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8834-9 - PubMed
  13. PLoS Biol. 2011 Dec;9(12):e1001221 - PubMed
  14. Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5 - PubMed
  15. Nat Rev Microbiol. 2012 Apr 11;10(5):323-35 - PubMed
  16. Curr Biol. 2014 Jan 6;24(1):40-49 - PubMed
  17. Annu Rev Microbiol. 2017 Sep 8;71:349-369 - PubMed
  18. Proc Natl Acad Sci U S A. 2017 May 9;114(19):4936-4941 - PubMed
  19. Proc Natl Acad Sci U S A. 2017 May 9;114(19):4857-4859 - PubMed
  20. Nature. 2016 Apr 25;533(7602):255-9 - PubMed
  21. Curr Opin Struct Biol. 2012 Oct;22(5):563-9 - PubMed
  22. Nature. 2017 Apr 6;544(7648):65-70 - PubMed
  23. Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4516-22 - PubMed
  24. Biochem J. 2017 May 16;474(11):1823-1836 - PubMed
  25. Nature. 2014 Feb 27;506(7489):498-502 - PubMed
  26. Cell Host Microbe. 2016 Oct 12;20(4):515-526 - PubMed
  27. Nucleic Acids Res. 2018 Jan 4;46(D1):D677-D683 - PubMed
  28. Biotechnol Biofuels. 2020 Apr 11;13:68 - PubMed
  29. Acta Chem Scand. 1970;24(9):3339-52 - PubMed
  30. Nat Rev Microbiol. 2013 Jul;11(7):497-504 - PubMed
  31. FEMS Microbiol Rev. 2018 Mar 1;42(2):146-164 - PubMed
  32. J Mol Biol. 2006 Jul 14;360(3):573-85 - PubMed
  33. PLoS Biol. 2009 Mar 31;7(3):e71 - PubMed
  34. Nature. 2010 Apr 8;464(7290):908-12 - PubMed
  35. Nat Rev Immunol. 2009 May;9(5):313-23 - PubMed
  36. Nat Commun. 2015 Jun 26;6:7481 - PubMed

Publication Types

Grant support