Display options
Share it on

Sci Rep. 2021 Dec 09;11(1):23713. doi: 10.1038/s41598-021-03273-0.

The potential of COVID-19 patients' sera to cause antibody-dependent enhancement of infection and IL-6 production.

Scientific reports

Jun Shimizu, Tadahiro Sasaki, Atsushi Yamanaka, Yoko Ichihara, Ritsuko Koketsu, Yoshihiro Samune, Pedro Cruz, Kei Sato, Naomi Tanga, Yuka Yoshimura, Ami Murakami, Misuzu Yamada, Kiyoe Itoi, Emi E Nakayama, Kazuo Miyazaki, Tatsuo Shioda

Affiliations

  1. MiCAN Technologies Inc., KKVP 1-36, Goryo-ohara, Nishikyo-Ku, Kyoto, 615-8245, Japan.
  2. Department of Viral Infection, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamada-oka, Suita, Osaka, 565-0871, Japan.
  3. Faculty of Tropical Medicine, Mahidol-Osaka Center for Infectious Diseases, Mahidol University, Bangkok, Thailand.
  4. MiCAN Technologies Inc., KKVP 1-36, Goryo-ohara, Nishikyo-Ku, Kyoto, 615-8245, Japan. [email protected].
  5. Department of Viral Infection, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamada-oka, Suita, Osaka, 565-0871, Japan. [email protected].
  6. Faculty of Tropical Medicine, Mahidol-Osaka Center for Infectious Diseases, Mahidol University, Bangkok, Thailand. [email protected].

PMID: 34887501 PMCID: PMC8660863 DOI: 10.1038/s41598-021-03273-0

Abstract

Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), many vaccine trials have been initiated. An important goal of vaccination is the development of neutralizing antibody (Ab) against SARS-CoV-2. However, the possible induction of antibody-dependent enhancement (ADE) of infection, which is known for other coronaviruses and dengue virus infections, is a particular concern in vaccine development. Here, we demonstrated that human iPS cell-derived, immortalized, and ACE2- and TMPRSS2-expressing myeloid cell lines are useful as host cells for SARS-CoV-2 infection. The established cell lines were cloned and screened based on their function in terms of susceptibility to SARS-CoV-2-infection or IL-6 productivity. Using the resulting K-ML2 (AT) clone 35 for SARS-CoV-2-infection or its subclone 35-40 for IL-6 productivity, it was possible to evaluate the potential of sera from severe COVID-19 patients to cause ADE and to stimulate IL-6 production upon infection with SARS-CoV-2.

© 2021. The Author(s).

References

  1. J Clin Epidemiol. 2018 Mar;95:137-139 - PubMed
  2. Cell. 2021 Aug 5;184(16):4203-4219.e32 - PubMed
  3. J Virol. 2001 Mar;75(5):2324-30 - PubMed
  4. Nat Microbiol. 2020 Oct;5(10):1185-1191 - PubMed
  5. Trends Microbiol. 2018 Mar;26(3):186-190 - PubMed
  6. EClinicalMedicine. 2021 Feb;32:100734 - PubMed
  7. Sci Rep. 2021 Jun 14;11(1):12448 - PubMed
  8. Lancet. 2021 Feb 6;397(10273):452-455 - PubMed
  9. J Gen Virol. 2018 Sep;99(9):1239-1247 - PubMed
  10. Rev Med Virol. 2020 Nov;30(6):1-9 - PubMed
  11. Vaccines (Basel). 2021 Jan 15;9(1): - PubMed
  12. Hum Immunol. 2013 Oct;74(10):1400-8 - PubMed
  13. Lancet Respir Med. 2020 Jul;8(7):687-695 - PubMed
  14. Immunol Rev. 2015 Nov;268(1):340-64 - PubMed
  15. Am J Respir Crit Care Med. 2005 Apr 15;171(8):850-7 - PubMed
  16. J Virol Methods. 2010 Feb;163(2):205-9 - PubMed
  17. Cell. 2000 Mar 3;100(5):575-85 - PubMed
  18. N Engl J Med. 2020 Oct 22;383(17):1695 - PubMed
  19. J Leukoc Biol. 2020 Jul;108(1):17-41 - PubMed
  20. Front Immunol. 2020 Jun 16;11:1446 - PubMed
  21. J Immunol. 1990 Apr 15;144(8):3183-6 - PubMed
  22. Emerg Infect Dis. 2021 Apr;27(4): - PubMed
  23. Nature. 2020 Aug;584(7821):353-363 - PubMed
  24. Clin Infect Dis. 2020 Nov 5;71(8):1937-1942 - PubMed
  25. Science. 2020 May 1;368(6490):473-474 - PubMed
  26. Cell. 2020 May 28;181(5):1016-1035.e19 - PubMed
  27. Cell. 2020 Oct 1;183(1):143-157.e13 - PubMed
  28. Gene Ther. 2013 May;20(5):504-13 - PubMed
  29. N Engl J Med. 2020 Oct 22;383(17):1695-1696 - PubMed
  30. Vaccine. 2009 Jan 22;27(4):505-12 - PubMed
  31. Virol J. 2014 May 06;11:82 - PubMed
  32. JCI Insight. 2020 Sep 3;5(17): - PubMed
  33. Heliyon. 2020 Nov 03;6(11):e05407 - PubMed
  34. N Engl J Med. 2020 Oct 22;383(17):1694-1695 - PubMed
  35. Euro Surveill. 2021 Jan;26(1): - PubMed
  36. Lancet. 2020 Feb 15;395(10223):497-506 - PubMed
  37. Nat Rev Immunol. 2020 Oct;20(10):633-643 - PubMed
  38. Cell. 2021 Jun 24;184(13):3452-3466.e18 - PubMed
  39. PLoS One. 2016 Apr 06;11(4):e0152384 - PubMed
  40. Clin Exp Immunol. 2015 Jul;181(1):126-32 - PubMed
  41. Viral Immunol. 2003;16(1):69-86 - PubMed
  42. Nature. 2021 Feb;590(7847):635-641 - PubMed
  43. Inflamm Regen. 2020 Oct 1;40:37 - PubMed
  44. Lancet Respir Med. 2020 Dec;8(12):1233-1244 - PubMed
  45. N Engl J Med. 2015 Sep 24;373(13):1195-206 - PubMed
  46. Cell. 2020 Apr 16;181(2):271-280.e8 - PubMed
  47. Cell Host Microbe. 2020 Jun 10;27(6):992-1000.e3 - PubMed
  48. Science. 2020 Aug 7;369(6504):718-724 - PubMed
  49. Cell Rep. 2021 Feb 2;34(5):108699 - PubMed
  50. Cytokine. 2020 Dec;136:155256 - PubMed
  51. J Virol. 2020 Feb 14;94(5): - PubMed
  52. Lancet Microbe. 2020 May;1(1):e14-e23 - PubMed
  53. Lancet. 1988 Apr 9;1(8589):790-4 - PubMed
  54. Nat Commun. 2020 Nov 13;11(1):5752 - PubMed

Publication Types

Grant support