Display options
Share it on

Hum Brain Mapp. 2022 Jan;43(1):431-451. doi: 10.1002/hbm.25364. Epub 2021 Feb 17.

Cortical thickness across the lifespan: Data from 17,075 healthy individuals aged 3-90 years.

Human brain mapping

Sophia Frangou, Amirhossein Modabbernia, Steven C R Williams, Efstathios Papachristou, Gaelle E Doucet, Ingrid Agartz, Moji Aghajani, Theophilus N Akudjedu, Anton Albajes-Eizagirre, Dag Alnaes, Kathryn I Alpert, Micael Andersson, Nancy C Andreasen, Ole A Andreassen, Philip Asherson, Tobias Banaschewski, Nuria Bargallo, Sarah Baumeister, Ramona Baur-Streubel, Alessandro Bertolino, Aurora Bonvino, Dorret I Boomsma, Stefan Borgwardt, Josiane Bourque, Daniel Brandeis, Alan Breier, Henry Brodaty, Rachel M Brouwer, Jan K Buitelaar, Geraldo F Busatto, Randy L Buckner, Vincent Calhoun, Erick J Canales-Rodríguez, Dara M Cannon, Xavier Caseras, Francisco X Castellanos, Simon Cervenka, Tiffany M Chaim-Avancini, Christopher R K Ching, Victoria Chubar, Vincent P Clark, Patricia Conrod, Annette Conzelmann, Benedicto Crespo-Facorro, Fabrice Crivello, Eveline A Crone, Anders M Dale, Udo Dannlowski, Christopher Davey, Eco J C de Geus, Lieuwe de Haan, Greig I de Zubicaray, Anouk den Braber, Erin W Dickie, Annabella Di Giorgio, Nhat Trung Doan, Erlend S Dørum, Stefan Ehrlich, Susanne Erk, Thomas Espeseth, Helena Fatouros-Bergman, Simon E Fisher, Jean-Paul Fouche, Barbara Franke, Thomas Frodl, Paola Fuentes-Claramonte, David C Glahn, Ian H Gotlib, Hans-Jörgen Grabe, Oliver Grimm, Nynke A Groenewold, Dominik Grotegerd, Oliver Gruber, Patricia Gruner, Rachel E Gur, Ruben C Gur, Tim Hahn, Ben J Harrison, Catharine A Hartman, Sean N Hatton, Andreas Heinz, Dirk J Heslenfeld, Derrek P Hibar, Ian B Hickie, Beng-Choon Ho, Pieter J Hoekstra, Sarah Hohmann, Avram J Holmes, Martine Hoogman, Norbert Hosten, Fleur M Howells, Hilleke E Hulshoff Pol, Chaim Huyser, Neda Jahanshad, Anthony James, Terry L Jernigan, Jiyang Jiang, Erik G Jönsson, John A Joska, Rene Kahn, Andrew Kalnin, Ryota Kanai, Marieke Klein, Tatyana P Klyushnik, Laura Koenders, Sanne Koops, Bernd Krämer, Jonna Kuntsi, Jim Lagopoulos, Luisa Lázaro, Irina Lebedeva, Won Hee Lee, Klaus-Peter Lesch, Christine Lochner, Marise W J Machielsen, Sophie Maingault, Nicholas G Martin, Ignacio Martínez-Zalacaín, David Mataix-Cols, Bernard Mazoyer, Colm McDonald, Brenna C McDonald, Andrew M McIntosh, Katie L McMahon, Genevieve McPhilemy, Susanne Meinert, José M Menchón, Sarah E Medland, Andreas Meyer-Lindenberg, Jilly Naaijen, Pablo Najt, Tomohiro Nakao, Jan E Nordvik, Lars Nyberg, Jaap Oosterlaan, Víctor Ortiz-García de la Foz, Yannis Paloyelis, Paul Pauli, Giulio Pergola, Edith Pomarol-Clotet, Maria J Portella, Steven G Potkin, Joaquim Radua, Andreas Reif, Daniel A Rinker, Joshua L Roffman, Pedro G P Rosa, Matthew D Sacchet, Perminder S Sachdev, Raymond Salvador, Pascual Sánchez-Juan, Salvador Sarró, Theodore D Satterthwaite, Andrew J Saykin, Mauricio H Serpa, Lianne Schmaal, Knut Schnell, Gunter Schumann, Kang Sim, Jordan W Smoller, Iris Sommer, Carles Soriano-Mas, Dan J Stein, Lachlan T Strike, Suzanne C Swagerman, Christian K Tamnes, Henk S Temmingh, Sophia I Thomopoulos, Alexander S Tomyshev, Diana Tordesillas-Gutiérrez, Julian N Trollor, Jessica A Turner, Anne Uhlmann, Odile A van den Heuvel, Dennis van den Meer, Nic J A van der Wee, Neeltje E M van Haren, Dennis van 't Ent, Theo G M van Erp, Ilya M Veer, Dick J Veltman, Aristotle Voineskos, Henry Völzke, Henrik Walter, Esther Walton, Lei Wang, Yang Wang, Thomas H Wassink, Bernd Weber, Wei Wen, John D West, Lars T Westlye, Heather Whalley, Lara M Wierenga, Katharina Wittfeld, Daniel H Wolf, Amanda Worker, Margaret J Wright, Kun Yang, Yulyia Yoncheva, Marcus V Zanetti, Georg C Ziegler, Paul M Thompson, Danai Dima

Affiliations

  1. Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, New York, USA.
  2. Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada.
  3. Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
  4. Psychology and Human Development, Institute of Education, University College London, London, United Kingdom.
  5. Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, USA.
  6. Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
  7. Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.
  8. Centre for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden.
  9. Department of Psychiatry, Amsterdam University Medical Centre, Vrije Universiteit, Amsterdam, Netherlands.
  10. Section Forensic Family & Youth Care, Institute of Education & Child Studies, Leiden University, Netherlands.
  11. Institute of Medical Imaging and Visualisation, Department of Medical Science and Public Health, Faculty of Health and Social Sciences, Bournemouth University, Poole, United Kingdom.
  12. Clinical Neuroimaging Laboratory, Centre for Neuroimaging and Cognitive Genomics and NCBES Galway Neuroscience Centre, National University of Ireland, Galway, Ireland.
  13. FIDMAG Germanes Hospitalàries, Barcelona, Spain.
  14. Mental Health Research Networking Center (CIBERSAM), Madrid, Spain.
  15. Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
  16. Radiologics, Inc, Saint Louis, Missouri, USA.
  17. Department of Integrative Medical Biology, Umeå University, Umeå, Sweden.
  18. Department of Psychiatry, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.
  19. Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
  20. Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Heidelberg University, Heidelberg, Germany.
  21. Imaging Diagnostic Centre, Hospital Clinic, Barcelona University Clinic, Barcelona, Spain.
  22. August Pi i Sunyer Biomedical Research Institut (IDIBAPS), Barcelona, Spain.
  23. Department of Psychology, Biological Psychology, Clinical Psychology and Psychotherapy, University of Würzburg, Würzburg, Germany.
  24. Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy.
  25. Department of Biological Psychology, Vrije Universiteit, Amsterdam, Netherlands.
  26. Department of Psychiatry & Psychotherapy, University of Lübeck, Lübeck, Germany.
  27. Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
  28. Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA.
  29. Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Kensington, New South Wales, Australia.
  30. Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, Netherlands.
  31. Donders Center of Medical Neurosciences, Radboud University, Nijmegen, Netherlands.
  32. Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, Netherlands.
  33. Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands.
  34. Laboratory of Psychiatric Neuroimaging, Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
  35. Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA.
  36. Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA.
  37. Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, USA Neurology, Radiology, Psychiatry and Biomedical Engineering, Emory University, Atlanta, Georgia, USA.
  38. MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom.
  39. Department of Child and Adolescent Psychiatry, New York University, New York, New York, USA.
  40. Stockholm Health Care Services, Stockholm, Sweden.
  41. Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California, USA.
  42. Mind-Body Research Group, Department of Neuroscience, KU Leuven, Leuven, Belgium.
  43. Department of Psychology, University of New Mexico, Albuquerque, New Mexico, USA.
  44. Mind Research Network, Albuquerque, New Mexico, USA.
  45. Department of Psychiatry, Université de Montréal, Montreal, Canada.
  46. Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Tübingen, Tübingen, Germany.
  47. HU Virgen del Rocio, IBiS, University of Sevilla, Sevilla, Spain.
  48. Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, Bordeaux, France.
  49. Erasmus School of Social and Behavioural Sciences, Erasmus University Rotterdam, Rotterdam, Netherlands.
  50. Faculteit der Sociale Wetenschappen, Instituut Psychologie, Universiteit Leiden, Leiden, Netherlands.
  51. Center for Multimodal Imaging and Genetics, Department of Neuroscience, University of California-San Diego, San Diego, California, USA.
  52. Department of Radiology, University of California-San Diego, San Diego, California, USA.
  53. Department of Psychiatry and Psychotherapy, University of Münster, Germany.
  54. Department of Psychiatry, University of Melbourne, Melbourne, Australia.
  55. Academisch Medisch Centrum, Universiteit van Amsterdam, Amsterdam, Netherlands.
  56. Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia.
  57. Kimel Family Translational Imaging Genetics Laboratory, Campbell Family Mental Health Research Institute, CAMH, Campbell, Canada.
  58. Department of Psychiatry, University of Toronto, Toronto, Canada.
  59. Biological Psychiatry Lab, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy.
  60. Department of Psychology, University of Oslo, Oslo, Norway.
  61. Sunnaas Rehabilitation Hospital HT, Nesodden, Norway.
  62. Division of Psychological and Social Medicine and Developmental Neurosciences, Technische Universität Dresden, Dresden, Germany.
  63. Faculty of Medicine, Universitätsklinikum Carl Gustav Carus an der TU Dresden, Dresden, Germany.
  64. Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany.
  65. Bjørknes College, Oslo, Norway.
  66. Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands.
  67. Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa.
  68. Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands.
  69. Department of Psychiatry, Radboud University Medical Center, Nijmegen, Netherlands.
  70. Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany.
  71. Department of Psychiatry, Tommy Fuss Center for Neuropsychiatric Disease Research Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
  72. Department of Psychology, Stanford University, Stanford, California, USA.
  73. Department of Psychiatry and Psychotherapy, University Medicine Greifswald, University of Greifswald, Greifswald, Germany.
  74. German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany.
  75. Department for Psychiatry, Psychosomatics and Psychotherapy, Universitätsklinikum Frankfurt, Goethe Universitat, Frankfurt, Germany.
  76. Neuroscience Institute, University of Cape Town, Cape Town, South Africa.
  77. Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany.
  78. Department of Psychiatry, Yale University, New Haven, Connecticut, USA.
  79. Learning Based Recovery Center, VA Connecticut Health System, West Haven, Connecticut, USA.
  80. Lifespan Brain Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
  81. Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
  82. Melbourne Neuropsychiatry Center, University of Melbourne, Melbourne, Australia.
  83. Interdisciplinary Center Psychopathology and Emotion regulation, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
  84. Brain and Mind Centre, University of Sydney, Sydney, Australia.
  85. Departments of Experimental and Clinical Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
  86. Personalized Healthcare, Genentech, Inc., South San Francisco, California, USA.
  87. Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
  88. Department of Psychology, Yale University, New Haven, Connecticut, USA.
  89. Norbert Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, University of Greifswald, Greifswald, Germany.
  90. De Bascule, Academic Centre for Children and Adolescent Psychiatry, Amsterdam, Netherlands.
  91. Department of Psychiatry, Oxford University, Oxford, United Kingdom.
  92. Center for Human Development, Departments of Cognitive Science, Psychiatry, and Radiology, University of California, San Diego, California, USA.
  93. Department of Radiology, Ohio State University College of Medicine, Columbus, Ohio, USA.
  94. Department of Neuroinformatics, Araya, Inc., Tokyo, Japan.
  95. Department of Psychiatry, University of California San Diego, San Diego, California, USA.
  96. Mental Health Research Center, Russian Academy of Medical Sciences, Moscow, Russia.
  97. Sunshine Coast Mind and Neuroscience, Thompson Institute, University of the Sunshine Coast, Queensland, Australia.
  98. Department of Child and Adolescent Psychiatry and Psychology, Hospital Clinic, University of Barcelona, Barcelona, Spain.
  99. Department of Psychiatry, Psychosomatics and Psychotherapy, Julius-Maximilians Universität Würzburg, Würzburg, Germany.
  100. SA MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa.
  101. Queensland Institute of Medical Research, Berghofer Medical Research Institute, Queensland, Australia.
  102. Department of Psychiatry, Bellvitge University Hospital-IDIBELL, University of Barcelona, Barcelona, Spain.
  103. Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom.
  104. School of Clinical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia.
  105. Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Heidelberg University, Heidelberg, Germany.
  106. Department of Clinical Medicine, Kyushu University, Fukuoka, Japan.
  107. CatoSenteret Rehabilitation Hospital, Son, Norway.
  108. Department of Radiation Sciences, Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden.
  109. Department of Clinical Neuropsychology, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
  110. Department of Psychiatry, University Hospital "Marques de Valdecilla", Instituto de Investigación Valdecilla (IDIVAL), Santander, Spain.
  111. Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
  112. Centre of Mental Health, University of Würzburg, Würzburg, Germany.
  113. Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.
  114. Department of Psychiatry, University of California at Irvine, Irvine, California, USA.
  115. Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
  116. Center for Depression, Anxiety, and Stress Research, McLean Hospital, Harvard Medical School, Boston, Massachusetts, USA.
  117. Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo, Spain.
  118. Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Australia.
  119. Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia.
  120. Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany.
  121. Centre for Population Neuroscience and Precision Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
  122. Department of General Psychiatry, Institute of Mental Health, Singapore, Singapore.
  123. Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.
  124. Department of Biomedical Sciences of Cells and Systems, Rijksuniversiteit Groningen, University Medical Center Groningen, Groningen, Netherlands.
  125. Queensland Brain Institute, University of Queensland, Queensland, Australia.
  126. PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway.
  127. Neuroimaging Unit, Technological Facilities, Valdecilla Biomedical Research Institute IDIVAL, Cantabria, Spain.
  128. College of Arts and Sciences, Georgia State University, Atlanta, Georgia, USA.
  129. School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands.
  130. Department of Psychiatry, Leiden University Medical Center, Leiden, Netherlands.
  131. Leiden Institute for Brain and Cognition, Leiden University Medical Center, Leiden, Netherlands.
  132. Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands.
  133. Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, California, USA.
  134. Institute of Community Medicine, University Medicine, Greifswald, University of Greifswald, Greifswald, Germany.
  135. German Centre for Cardiovascular Research (DZHK), partner site Greifswald, Greifswald, Germany.
  136. German Center for Diabetes Research (DZD), partner site Greifswald, Greifswald, Germany.
  137. Department of Psychology, University of Bath, Bath, United Kingdom.
  138. Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Evanston, Illinois, USA.
  139. Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
  140. Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany.
  141. Developmental and Educational Psychology Unit, Institute of Psychology, Leiden University, Leiden, Netherlands.
  142. National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, USA.
  143. Department of Child and Adolescent Psychiatry, Child Study Center, NYU Langone Health, New York City, New York, USA.
  144. Instituto de Ensino e Pesquisa, Hospital Sírio-Libanês, São Paulo, Brazil.
  145. Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany.
  146. Department of Psychology, School of Arts and Social Sciences, City University of London, London, United Kingdom.

PMID: 33595143 DOI: 10.1002/hbm.25364

Abstract

Delineating the association of age and cortical thickness in healthy individuals is critical given the association of cortical thickness with cognition and behavior. Previous research has shown that robust estimates of the association between age and brain morphometry require large-scale studies. In response, we used cross-sectional data from 17,075 individuals aged 3-90 years from the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to infer age-related changes in cortical thickness. We used fractional polynomial (FP) regression to quantify the association between age and cortical thickness, and we computed normalized growth centiles using the parametric Lambda, Mu, and Sigma method. Interindividual variability was estimated using meta-analysis and one-way analysis of variance. For most regions, their highest cortical thickness value was observed in childhood. Age and cortical thickness showed a negative association; the slope was steeper up to the third decade of life and more gradual thereafter; notable exceptions to this general pattern were entorhinal, temporopolar, and anterior cingulate cortices. Interindividual variability was largest in temporal and frontal regions across the lifespan. Age and its FP combinations explained up to 59% variance in cortical thickness. These results may form the basis of further investigation on normative deviation in cortical thickness and its significance for behavioral and cognitive outcomes.

© 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.

Keywords: aging; cortical thickness; development; trajectories

References

  1. Abe, O., Yamasue, H., Aoki, S., Suga, M., Yamada, H., Kasai, K., … Ohtomo, K. (2008). Aging in the CNS: Comparison of gray/white matter volume and diffusion tensor data. Neurobiology of Aging, 29(1), 102-116. https://doi.org/10.1016/j.neurobiolaging.2006.09.003 - PubMed
  2. Alegret, M., Vinyes-Junqué, G., Boada, M., Martínez-Lage, P., Cuberas, G., Espinosa, A., … Tárraga, L. (2010). Brain perfusion correlates of visuoperceptual deficits in mild cognitive impairment and mild Alzheimer's disease. Journal of Alzheimer's Disease, 21(2), 557-567. https://doi.org/10.3233/JAD-2010-091069 - PubMed
  3. Allen, J. S., Bruss, J., Brown, C. K., & Damasio, H. (2005). Normal neuroanatomical variation due to age: The major lobes and a parcellation of the temporal region. Neurobiology of Aging, 26(9), 1245-1260. https://doi.org/10.1016/j.neurobiolaging.2005.05.023 - PubMed
  4. Aune, D., Sen, A., Prasad, M., Norat, T., Janszky, I., Tonstad, S., … Vatten, L. J. (2016). BMI and all-cause mortality: Systematic review and non-linear dose-response meta-analysis of 230 cohort studies with 3.74 million deaths among 30.3 million participants. BMJ, 353, i2156. https://doi.org/10.1136/bmj.i2156 - PubMed
  5. Blaizot, X., Mansilla, F., Insausti, A. M., Constans, J. M., Salinas-Alaman, A., Pro-Sistiaga, P., … Insausti, R. (2010). The human parahippocampal region: I. temporal pole cytoarchitectonic and MRI correlation. Cerebral Cortex, 20(9), 2198-2212. https://doi.org/10.1093/cercor/bhp289 - PubMed
  6. Boedhoe, P. S. W., Schmaal, L., Abe, Y., Alonso, P., Ameis, S. H., Anticevic, A., … van den Heuvel, O. A. (2018). Cortical abnormalities associated with pediatric and adult obsessive-compulsive disorder: Findings from the ENIGMA obsessive-compulsive disorder working group. The American Journal of Psychiatry, 175(5), 453-462. https://doi.org/10.1176/appi.ajp.2017.17050485 - PubMed
  7. Brickman, A. M., Habeck, C., Zarahn, E., Flynn, J., & Stern, Y. (2007). Structural MRI covariance patterns associated with normal aging and neuropsychological functioning. Neurobiology of Aging, 28(2), 284-295. https://doi.org/10.1016/j.neurobiolaging.2005.12.016 - PubMed
  8. Burgess, P. W., Dumontheil, I., & Gilbert, S. J. (2007). The gateway hypothesis of rostral prefrontal cortex (area 10) function. Trends in Cognitive Sciences, 11(7), 290-298. https://doi.org/10.1016/j.tics.2007.05.004 - PubMed
  9. Chan, M. Y., Na, J., Agres, P. F., Savalia, N. K., Park, D. C., & Wig, G. S. (2018). Socioeconomic status moderates age-related differences in the brain's functional network organization and anatomy across the adult lifespan. Proceedings of the National Academy of Sciences of the United States of America, 115(22), E5144-E5153. https://doi.org/10.1073/pnas.1714021115 - PubMed
  10. Cole, T. J., & Green, P. J. (1992). Smoothing reference centile curves: the LMS method and penalized likelihood. Statistics in Medicine, 11(10), 1305-1319. https://doi.org/10.1002/sim.4780111005. - PubMed
  11. Dickerson, B. C., Feczko, E., Augustinack, J. C., Pacheco, J., Morris, J. C., Fischl, B., & Buckner, R. L. (2009). Differential effects of aging and Alzheimer's disease on medial temporal lobe cortical thickness and surface area. Neurobiology of Aging, 30(3), 432-440. https://doi.org/10.1016/j.neurobiolaging.2007.07.022 - PubMed
  12. Ducharme, S., Albaugh, M. D., Nguyen, T. V., Hudziak, J. J., Mateos-Pérez, J. M., Labbe, A., … Brain Development Cooperative Group. (2016). Trajectories of cortical thickness maturation in normal brain development-the importance of quality control procedures. NeuroImage, 125, 267-279. https://doi.org/10.1016/j.neuroimage.2015.10.010 - PubMed
  13. Eberling, J. L., Nordahl, T. E., Kusubov, N., Reed, B. R., Budinger, T. F., & Jagust, W. J. (1995). Reduced temporal lobe glucose metabolism in aging. Journal of Neuroimaging, 5(3), 178-182. https://doi.org/10.1111/jon199553178 - PubMed
  14. Fischl, B., & Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences of the United States of America, 97(20), 11050-11055. https://doi.org/10.1073/pnas.200033797 - PubMed
  15. Fjell, A. M., Grydeland, H., Krogsrud, S. K., Amlien, I., Rohani, D. A., Ferschmann, L., … Walhovd, K. B. (2015). Development and aging of cortical thickness correspond to genetic organization patterns. Proceedings of the National Academy of Sciences of the United States of America, 112(50), 15462-15467. https://doi.org/10.1073/pnas.1508831112 - PubMed
  16. Fjell, A. M., Westlye, L. T., Amlien, I., Espeseth, T., Reinvang, I., Raz, N., … Walhovd, K. B. (2009). High consistency of regional cortical thinning in aging across multiple samples. Cerebral Cortex, 19(9), 2001-2012. https://doi.org/10.1093/cercor/bhn232 - PubMed
  17. Fortin, J. P., Cullen, N., Sheline, Y. I., Taylor, W. D., Aselcioglu, I., Cook, P. A., … Shinohara, R. T. (2018). Harmonization of cortical thickness measurements across scanners and sites. NeuroImage, 167, 104-120. https://doi.org/10.1016/j.neuroimage.2017.11.024 - PubMed
  18. Gilbert, S. J., Gonen-Yaacovi, G., Benoit, R. G., Volle, E., & Burgess, P. W. (2010). Distinct functional connectivity associated with lateral versus medial rostral prefrontal cortex: A meta-analysis. NeuroImage, 53(4), 1359-1367. https://doi.org/10.1016/j.neuroimage.2010.07.032 - PubMed
  19. Goh, S., Bansal, R., Xu, D., Hao, X., Liu, J., & Peterson, B. S. (2011). Neuroanatomical correlates of intellectual ability across the life span. Developmental Cognitive Neuroscience, 1(3), 305-312. https://doi.org/10.1016/j.dcn.2011.03.001 - PubMed
  20. Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N. A., Friston, K. J., & Frackowiak, R. S. J. (2001). A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage, 14(1 Pt 1), 21-36. https://doi.org/10.1006/nimg.2001.0786 - PubMed
  21. Grasby, K. L. (2020). Enhancing NeuroImaging genetics through meta-analysis consortium (ENIGMA)-genetics working group. The genetic architecture of the human cerebral cortex. Science, 367(6484), eaay6690. https://doi.org/10.1126/science.aay6690 - PubMed
  22. Hasan, K. M., Mwangi, B., Cao, B., Keser, Z., Tustison, N. J., Kochunov, P., … Soares, J. (2016). Entorhinal cortex thickness across the human lifespan. Journal of Neuroimaging, 26(3), 278-282. https://doi.org/10.1111/jon.12297 - PubMed
  23. Hedman, A. M., van Haren, N. E., Schnack, H. G., Kahn, R. S., & Hulshoff Pol, H. E. (2012). Human brain changes across the life span: A review of 56 longitudinal magnetic resonance imaging studies. Human Brain Mapping, 33(8), 1987-2002. https://doi.org/10.1002/hbm.21334 - PubMed
  24. Hibar, D. P., Westlye, L. T., Doan, N. T., Jahanshad, N., Cheung, J. W., Ching, C. R. K., … Andreassen, O. A. (2018). Cortical abnormalities in bipolar disorder: An MRI analysis of 6503 individuals from the ENIGMA bipolar disorder working group. Molecular Psychiatry, 23(4), 932-942. https://doi.org/10.1038/mp.2017.73 - PubMed
  25. Hodges, J. R., & Patterson, K. (2007). Semantic dementia: a unique clinicopathological syndrome. Lancet Neurology, 6(11), 1004-1014. https://doi.org/10.1016/S1474-4422(07)70266-1 - PubMed
  26. Hoogman, M., Muetzel, R., Guimaraes, J. P., Shumskaya, E., Mennes, M., Zwiers, M. P., … Franke, B. (2019). Brain imaging of the cortex in ADHD: A coordinated analysis of large-scale clinical and population-based samples. The American Journal of Psychiatry, 176(7), 531-542. https://doi.org/10.1176/appi.ajp.2019.18091033 - PubMed
  27. Insausti, R., Muñoz-López, M., Insausti, A. M., & Artacho-Pérula, E. (2017). The human Periallocortex: Layer pattern in Presubiculum, Parasubiculum and Entorhinal cortex. A review. Frontiers in Neuroanatomy, 11, 84. https://doi.org/10.3389/fnana.2017.00084 - PubMed
  28. Shaw, P., Kabani, N. J., Lerch, J. P., Eckstrand, K., Lenroot, R., Gogtay, N., … Wise, S. P. (2008). Neurodevelopmental trajectories of the human cerebral cortex. The Journal of Neuroscience, 28(14), 3586-3594. https://doi.org/10.1523/JNEUROSCI.5309-07.2008 - PubMed
  29. la Fougère, C., Grant, S., Kostikov, A., Schirrmacher, R., Gravel, P., Schipper, H. M., … Thiel, A. (2011). Where in-vivo imaging meets cytoarchitectonics: The relationship between cortical thickness and neuronal density measured with high-resolution [18F]flumazenil-PET. NeuroImage, 56(3), 951-960. https://doi.org/10.1016/j.neuroimage.2010.11.015 - PubMed
  30. Mauvais-Jarvis, F., Bairey Merz, N., Barnes, P. J., Brinton, R. D., Carrero, J. J., DeMeo, D. L., … Suzuki, A. (2020). Sex and gender: Modifiers of health, disease, and medicine. Lancet, 396(10250), 565-582. https://doi.org/10.1016/S0140-6736(20)31561-0 - PubMed
  31. Mills, K. L., Goddings, A. L., Herting, M. M., Meuwese, R., Blakemore, S. J., Crone, E. A., … Tamnes, C. K. (2016). Structural brain development between childhood and adulthood: Convergence across four longitudinal samples. NeuroImage, 141, 273-281. https://doi.org/10.1016/j.neuroimage.2016.07.044 - PubMed
  32. Moayedi, M., Salomons, T. V., Dunlop, K. A., Downar, J., & Davis, K. D. (2015). Connectivity-based parcellation of the human frontal polar cortex. Brain Structure & Function, 220(5), 2603-2616. https://doi.org/10.1007/s00429-014-0809-6 - PubMed
  33. Modabbernia, A., Reichenberg, A., Ing, A., Moser, D. A., Doucet, G. E., Artiges, E., … Frangou, S. (2020). Linked patterns of biological and environmental covariation with brain structure in adolescence: A population-based longitudinal study. Molecular Psychiatry. https://doi.org/10.1038/s41380-020-0757-x - PubMed
  34. Mutlu, A. K., Schneider, M., Debbané, M., Badoud, D., Eliez, S., & Schaer, M. (2013). Sex differences in thickness, and folding developments throughout the cortex. NeuroImage, 82, 200-207. https://doi.org/10.1016/j.neuroimage.2013.05.076 - PubMed
  35. Ongür, D., Ferry, A. T., & Price, J. L. (2003). Architectonic subdivision of the human orbital and medial prefrontal cortex. The Journal of Comparative Neurology, 460(3), 425-449. https://doi.org/10.1002/cne.10609 - PubMed
  36. Paus, T. (2010). Sex differences in the human brain: A developmental perspective. Progress in Brain Research, 186, 13-28. https://doi.org/10.1016/B978-0-444-53630-3.00002-6 - PubMed
  37. Pelvig, D. P., Pakkenberg, H., Stark, A. K., & Pakkenberg, B. (2008). Neocortical glial cell numbers in human brains. Neurobiology of Aging, 29(11), 1754-1762. https://doi.org/10.1016/j.neurobiolaging.2007.04.013 - PubMed
  38. Petrides, M., Tomaiuolo, F., Yeterian, E. H., & Pandya, D. N. (2012). The prefrontal cortex: Comparative architectonic organization in the human and the macaque monkey brains. Cortex, 48(1), 46-57. https://doi.org/10.1016/j.cortex.2011.07.002 - PubMed
  39. Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676-682. https://doi.org/10.1073/pnas.98.2.676 - PubMed
  40. Raz, N., Ghisletta, P., Rodrigue, K. M., Kennedy, K. M., & Lindenberger, U. (2010). Trajectories of brain aging in middle-aged and older adults: Regional and individual differences. NeuroImage, 51(2), 501-511. https://doi.org/10.1016/j.neuroimage.2010.03.020 - PubMed
  41. Raz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., Head, D., Williamson, A., … Acker, J. D. (2005). Regional brain changes in aging healthy adults: General trends, individual differences and modifiers. Cerebral Cortex, 15(11), 1676-1689. https://doi.org/10.1093/cercor/bhi044 - PubMed
  42. Reitz, C., & Mayeux, R. (2014). Alzheimer disease: Epidemiology, diagnostic criteria, risk factors and biomarkers. Biochemical Pharmacology, 88(4), 640-651. https://doi.org/10.1016/j.bcp.2013.12.024 - PubMed
  43. Rigby, R. A., & Stasinopoulos, D. M. (2005). Generalized additive models for location, scale and shape. Applied Statistics, 54(3), 507-554. - PubMed
  44. Rolls, E. T. (2018). The storage and recall of memories in the hippocampo-cortical system. Cell and Tissue Research, 373(3), 577-604. https://doi.org/10.1007/s00441-017-2744-3 - PubMed
  45. Royston, P., & Altman, D. (1994). Regression using fractional polynomials of continuous covariates: Parsimonious parametric modelling. Applied Statistics, 43, 429-467. https://doi.org/10.2307/2986270 - PubMed
  46. Salat, D. H., Buckner, R. L., Snyder, A. Z., Greve, D. N., Desikan, R. S., Busa, E., … Fischl, B. (2004). Thinning of the cerebral cortex in aging. Cerebral Cortex, 14(7), 721-730. https://doi.org/10.1093/cercor/bhh032 - PubMed
  47. Sauerbrei, W., Meier-Hirmer, C., Benner, A., & Royston, P. (2006). Multivariable regression model building by using fractional polynomials: Description of SAS, STATA and R programs. Computational Statistics and Data Analysis, 50(12), 3464-3485. https://doi.org/10.1016/j.csda.2005.07.015 - PubMed
  48. Schmaal, L., Hibar, D. P., Sämann, P. G., Hall, G. B., Baune, B. T., Jahanshad, N., … Veltman, D. J. (2017). Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA major depressive disorder working group. Molecular Psychiatry, 22(6), 900-909. https://doi.org/10.1038/mp.2016.60 - PubMed
  49. Schmitt, J. E., Raznahan, A., Clasen, L. S., Wallace, G. L., Pritikin, J. N., Lee, N. R., … Neale, M. C. (2019). The dynamic associations between cortical thickness and general intelligence are genetically mediated. Cerebral Cortex, 29(11), 4743-4752. https://doi.org/10.1093/cercor/bhz007 - PubMed
  50. Schultz, H., Sommer, T., & Peters, J. (2012). Direct evidence for domain-sensitive functional subregions in human entorhinal cortex. The Journal of Neuroscience, 32(14), 4716-4723. https://doi.org/10.1523/JNEUROSCI.5126-11.2012 - PubMed
  51. Semendeferi, K., Teffer, K., Buxhoeveden, D. P., Park, M. S., Bludau, S., Amunts, K., … Buckwalter, J. (2011). Spatial organization of neurons in the frontal pole sets humans apart from great apes. Cerebral Cortex, 21(7), 1485-1497. https://doi.org/10.1093/cercor/bhq191 - PubMed
  52. Senior, A. M., Grueber, C. E., Kamiya, T., Lagisz, M., O'Dwyer, K., Santos, E.S., & Nakagawa, S. (2016). Heterogeneity in ecological and evolutionary meta-analyses: its magnitude and implications. Ecology, 97(12), 3293-3299. https://doi.org/10.1002/ecy.1591. - PubMed
  53. Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N., … Giedd, J. (2006). Intellectual ability and cortical development in children and adolescents. Nature, 440(7084), 676-679. https://doi.org/10.1038/nature04513 - PubMed
  54. Stasinopoulos, D. M., & Rigby, R. A. (2007). Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, 23(7), 1-46. https://doi.org/10.18637/jss.v023.i07 - PubMed
  55. Storsve, A. B., Fjell, A. M., Tamnes, C. K., Westlye, L. T., Overbye, K., Aasland, H. W., & Walhovd, K. B. (2014). Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: Regions of accelerating and decelerating change. The Journal of Neuroscience, 34(25), 8488-8498. https://doi.org/10.1523/JNEUROSCI.0391-14.2014 - PubMed
  56. Tamnes, C. K., Østby, Y., Fjell, A. M., Westlye, L. T., Due-Tønnessen, P., & Walhovd, K. B. (2010). Brain maturation in adolescence and young adulthood: Regional age-related changes in cortical thickness and white matter volume and microstructure. Cerebral Cortex, 20(3), 534-548. https://doi.org/10.1093/cercor/bhp118 - PubMed
  57. Teeuw, J., Brouwer, R. M., Koenis, M. M. G., Swagerman, S. C., Boomsma, D. I., & Hulshoff Pol, H. E. (2019). Genetic influences on the development of cerebral cortical thickness during childhood and adolescence in a Dutch longitudinal twin sample: The Brainscale study. Cerebral Cortex, 29(3), 978-993. https://doi.org/10.1093/cercor/bhy005 - PubMed
  58. Terry, R. D., DeTeresa, R., & Hansen, L. A. (1987). Neocortical cell counts in normal human adult aging. Annals of Neurology, 21(6), 530-539. https://doi.org/10.1002/ana.410210603 - PubMed
  59. Thambisetty, M., Wan, J., Carass, A., An, Y., Prince, J. L., & Resnick, S. M. (2010). Longitudinal changes in cortical thickness associated with normal aging. NeuroImage, 52(4), 1215-1223. https://doi.org/10.1016/j.neuroimage.2010.04.258 - PubMed
  60. Thompson, P. M., Andreassen, O. A., Arias-Vasquez, A., Bearden, C. E., Boedhoe, P. S., Brouwer, R. M., … Ye, J. (2017). ENIGMA and the individual: Predicting factors that affect the brain in 35 countries worldwide. NeuroImage, 145(Pt B), 389-408. https://doi.org/10.1016/j.neuroimage.2015.11.057 - PubMed
  61. Thompson, P. M., Hayashi, K. M., Dutton, R. A., Chiang, M. C., Leow, A. D., Sowell, E. R., … Toga, A. W. (2007). Tracking Alzheimer's disease. Annals of the New York Academy of Sciences, 1097, 183-214. https://doi.org/10.1196/annals.1379.017 - PubMed
  62. Thompson, P. M., Jahanshad, N., Ching, C. R. K., Salminen, L. E., Thomopoulos, S. I., Bright, J., … Zelman, V. (2020). The ENIGMA consortium: Large-scale collaborative analyses of neuroimaging and genetic data. Translational Psychiatry, 10(1), 100. https://doi.org/10.1038/s41398-020-0705-1 - PubMed
  63. Vaidya, J. G., Paradiso, S., Boles Ponto, L. L., McCormick, L. M., & Robinson, R. G. (2007). Aging, grey matter, and blood flow in the anterior cingulate cortex. NeuroImage, 37(4), 1346-1353. https://doi.org/10.1016/j.neuroimage.2007.06.015 - PubMed
  64. van Erp, T. G., Walton, E., Hibar, D. P., Schmaal, L., Jiang, W., Glahn, D. C., … Orhan, F. (2018). Cortical brain abnormalities in 4474 individuals with schizophrenia and 5098 control subjects via the enhancing Neuro imaging genetics through meta analysis (ENIGMA) consortium. Biological Psychiatry, 84(9), 644-654. https://doi.org/10.1016/j.biopsych.2018.04.023 - PubMed
  65. van Rooij, D., Anagnostou, E., Arango, C., Auzias, G., Behrmann, M., Busatto, G. F., … Buitelaar, J. K. (2018). Cortical and subcortical brain Morphometry differences between patients with autism Spectrum disorder and healthy individuals across the lifespan: Results from the ENIGMA ASD working group. The American Journal of Psychiatry, 175(4), 359-369. https://doi.org/10.1176/appi.ajp.2017.17010100 - PubMed
  66. Walhovd, K. B., Fjell, A. M., Giedd, J., Dale, A. M., & Brown, T. T. (2017). Through thick and thin: A need to reconcile contradictory results on trajectories in human cortical development. Cerebral Cortex, 27(2), 1472-1481. https://doi.org/10.1093/cercor/bhv301 - PubMed
  67. Whelan, C. D., Altmann, A., Botía, J. A., Jahanshad, N., Hibar, D. P., Absil, J., … Sisodiya, S. M. (2018). Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study. Brain, 141(2), 391-408. https://doi.org/10.1093/brain/awx341 - PubMed
  68. Wierenga, L. M., Doucet, G. E., Dima, D., Agartz, I., Aghajani, M., Akudjedu, T. N., … Tamnes, C. K. (2020). Greater male than female variability in regional brain structure across the lifespan. Human Brain Mapping. https://doi.org/10.1002/hbm.25204 - PubMed
  69. Wierenga, L. M., Langen, M., Oranje, B., & Durston, S. (2014). Unique developmental trajectories of cortical thickness and surface area. NeuroImage, 87, 120-126. https://doi.org/10.1016/j.neuroimage.2013.11.010 - PubMed
  70. Zahodne, L. B., Manly, J. J., Narkhede, A., Griffith, E., DeCarli, C., Schupf, N., … Brickman, A. (2015). Structural MRI predictors of late-life cognition differ across African Americans, Hispanics, and Whites. Current Alzheimer Research, 12(7), 632-639. https://doi.org/10.2174/1567205012666150530203214 - PubMed
  71. Zhou, M., Zhang, F., Zhao, L., Qian, J., & Dong, C. (2016). Entorhinal cortex: A good biomarker of mild cognitive impairment and mild Alzheimer's disease. Reviews in the Neurosciences, 27(2), 185-195. https://doi.org/10.1515/revneuro-2015-0019 - PubMed
  72. Ziegler, G., Moutoussis, M., Hauser, T. U., Fearon, P., Bullmore, E. T., Goodyer, I. M., … Dolan, R. J. (2020). Childhood socio-economic disadvantage predicts reduced myelin growth across adolescence and young adulthood. Human Brain Mapping, 41(12), 3392-3402. https://doi.org/10.1002/hbm.25024 - PubMed

Publication Types

Grant support