Display options
Share it on

Leukemia. 2021 Dec;35(12):3509-3525. doi: 10.1038/s41375-021-01271-9. Epub 2021 May 18.

JunB is a key regulator of multiple myeloma bone marrow angiogenesis.

Leukemia

Fengjuan Fan, Stefano Malvestiti, Sonia Vallet, Judith Lind, Jose Manuel Garcia-Manteiga, Eugenio Morelli, Qinyue Jiang, Anja Seckinger, Dirk Hose, Hartmut Goldschmidt, Andreas Stadlbauer, Chunyan Sun, Heng Mei, Martin Pecherstorfer, Latifa Bakiri, Erwin F Wagner, Giovanni Tonon, Martin Sattler, Yu Hu, Pierfrancesco Tassone, Dirk Jaeger, Klaus Podar

Affiliations

  1. Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
  2. Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany.
  3. Department of Internal Medicine II, University Hospital Krems, Krems an der Donau, Austria.
  4. Molecular Oncology and Hematology Unit, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria.
  5. Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milan, Italy.
  6. Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, Catanzaro, Italy.
  7. Department of Medicine, Harvard Medical School, Boston, MA, USA.
  8. University Hospital Heidelberg, Heidelberg, Germany.
  9. Laboratory of Hematology and Immunology & Laboratory for Myeloma Research, Vrije Universiteit Brussel (VUB) Belgium, Brussels, Belgium.
  10. Department of Neurosurgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany.
  11. Institute of Medical Radiology, University Hospital St. Pölten, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria.
  12. Genes & Disease Group, Department of Dermatology, Medical University of Vienna (MUW), Vienna, Austria.
  13. Genes & Disease Group, Department of Laboratory Medicine, Medical University of Vienna (MUW), Vienna, Austria.
  14. Functional Genomics of Cancer Unit, Experimental Oncology Division, IRCCS San Raffaele Scientific Institute, Milan, Italy.
  15. Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA.
  16. Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. [email protected].
  17. Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany. [email protected].
  18. Department of Internal Medicine II, University Hospital Krems, Krems an der Donau, Austria. [email protected].
  19. Molecular Oncology and Hematology Unit, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria. [email protected].

PMID: 34007044 PMCID: PMC8632680 DOI: 10.1038/s41375-021-01271-9

Abstract

Bone marrow (BM) angiogenesis significantly influences disease progression in multiple myeloma (MM) patients and correlates with adverse prognosis. The present study shows a statistically significant correlation of the AP-1 family member JunB with VEGF, VEGFB, and IGF1 expression levels in MM. In contrast to the angiogenic master regulator Hif-1α, JunB protein levels were independent of hypoxia. Results in tumor-cell models that allow the induction of JunB knockdown or JunB activation, respectively, corroborated the functional role of JunB in the production and secretion of these angiogenic factors (AFs). Consequently, conditioned media derived from MM cells after JunB knockdown or JunB activation either inhibited or stimulated in vitro angiogenesis. The impact of JunB on MM BM angiogenesis was finally confirmed in a dynamic 3D model of the BM microenvironment, a xenograft mouse model as well as in patient-derived BM sections. In summary, in continuation of our previous study (Fan et al., 2017), the present report reveals for the first time that JunB is not only a mediator of MM cell survival, proliferation, and drug resistance, but also a promoter of AF transcription and consequently of MM BM angiogenesis. Our results thereby underscore worldwide efforts to target AP-1 transcription factors such as JunB as a promising strategy in MM therapy.

© 2021. The Author(s).

References

  1. Nature. 2012 Mar 28;483(7391):603-7 - PubMed
  2. Leukemia. 2009 Nov;23(11):2177-81 - PubMed
  3. Blood. 1996 Oct 1;88(7):2699-706 - PubMed
  4. Leukemia. 2013 Aug;27(8):1697-706 - PubMed
  5. J Magn Reson Imaging. 2005 Jul;22(1):154-62 - PubMed
  6. J Clin Oncol. 2015 Nov 20;33(33):3911-20 - PubMed
  7. Blood. 2009 Jul 2;114(1):128-43 - PubMed
  8. Clin Cancer Res. 2007 Jan 15;13(2 Pt 1):475-81 - PubMed
  9. Leukemia. 2010 Nov;24(11):1967-70 - PubMed
  10. Trends Cancer. 2016 Dec;2(12):758-770 - PubMed
  11. Sci Rep. 2018 Jul 11;8(1):10457 - PubMed
  12. Nature. 2019 May;569(7757):503-508 - PubMed
  13. Bone Marrow Transplant. 2004 Aug;34(3):235-9 - PubMed
  14. Clin Cancer Res. 2000 Aug;6(8):3111-6 - PubMed
  15. Leukemia. 2011 Mar;25(3):527-37 - PubMed
  16. Curr Cancer Drug Targets. 2011 Nov;11(9):1005-24 - PubMed
  17. Cancer Res. 2009 Jun 15;69(12):5082-90 - PubMed
  18. EMBO J. 1999 Feb 15;18(4):934-48 - PubMed
  19. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):4082-5 - PubMed
  20. Methods Mol Biol. 2017;1612:177-190 - PubMed
  21. Nature. 2005 Jun 16;435(7044):969-73 - PubMed
  22. Leukemia. 2006 Feb;20(2):193-9 - PubMed
  23. J Med Chem. 2014 Aug 28;57(16):6930-48 - PubMed
  24. Cancer Res. 2007 Apr 1;67(7):2982-9 - PubMed
  25. Ann Hematol. 2010 Aug;89(8):789-94 - PubMed
  26. Nat Rev Genet. 2004 Apr;5(4):276-87 - PubMed
  27. Nucleic Acids Res. 2020 Jan 8;48(D1):D87-D92 - PubMed
  28. Blood. 2007 Feb 15;109(4):1692-700 - PubMed
  29. J Pathol. 2009 Mar;217(4):571-80 - PubMed
  30. Blood. 2004 Aug 15;104(4):1159-65 - PubMed
  31. Nucleic Acids Res. 2003 Jul 1;31(13):3651-3 - PubMed
  32. Blood. 2003 Nov 1;102(9):3340-8 - PubMed
  33. Leukemia. 2004 Mar;18(3):624-7 - PubMed
  34. Bioinformatics. 2002 Feb;18(2):333-4 - PubMed
  35. Nat Commun. 2017 Aug 21;8(1):301 - PubMed
  36. Nat Methods. 2012 Jun 28;9(7):676-82 - PubMed
  37. Leukemia. 2011 Apr;25(4):707-11 - PubMed
  38. EMBO J. 2007 Feb 7;26(3):710-9 - PubMed
  39. Blood. 2006 Sep 15;108(6):2020-8 - PubMed
  40. Blood. 1993 May 15;81(10):2708-13 - PubMed
  41. Quant Biol. 2013 Jun;1(2):115-130 - PubMed
  42. Blood. 2010 Sep 2;116(9):1524-7 - PubMed
  43. Br J Haematol. 1994 Jul;87(3):503-8 - PubMed
  44. Clin Cancer Res. 2001 Sep;7(9):2675-81 - PubMed
  45. Expert Opin Investig Drugs. 2019 May;28(5):445-462 - PubMed
  46. Oncogenesis. 2017 May 15;6(5):e337 - PubMed
  47. Genome Res. 2003 Nov;13(11):2498-504 - PubMed
  48. Hum Mutat. 2001 Sep;18(3):212-24 - PubMed
  49. Signal Transduct Target Ther. 2019 Dec 24;4:64 - PubMed
  50. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 - PubMed
  51. Cancers (Basel). 2020 Jul 22;12(8): - PubMed
  52. Leukemia. 2017 Jul;31(7):1570-1581 - PubMed
  53. EMBO J. 2000 May 2;19(9):2056-68 - PubMed
  54. Nucleic Acids Res. 2019 Jan 8;47(D1):D607-D613 - PubMed
  55. N Engl J Med. 1999 Nov 18;341(21):1565-71 - PubMed
  56. Oncogene. 2012 Jun 21;31(25):3098-110 - PubMed
  57. Blood. 2012 Jun 14;119(24):5782-94 - PubMed
  58. Br J Haematol. 2002 Dec;119(3):665-71 - PubMed
  59. Nat Commun. 2019 Apr 3;10(1):1523 - PubMed
  60. BMC Bioinformatics. 2003 Jan 13;4:2 - PubMed
  61. Blood. 1999 May 1;93(9):3064-73 - PubMed
  62. Blood. 2006 Sep 1;108(5):1724-32 - PubMed
  63. Cancer Cell. 2006 Apr;9(4):313-25 - PubMed
  64. Nat Methods. 2012 Jul;9(7):671-5 - PubMed
  65. J Exp Med. 1989 Nov 1;170(5):1715-25 - PubMed

Publication Types