Display options
Share it on

Proc Natl Acad Sci U S A. 2021 Dec 07;118(49). doi: 10.1073/pnas.2110288118.

Recognition of the antigen-presenting molecule MR1 by a Vδ3.

Proceedings of the National Academy of Sciences of the United States of America

Michael T Rice, Anouk von Borstel, Priyanka Chevour, Wael Awad, Lauren J Howson, Dene R Littler, Nicholas A Gherardin, Jérôme Le Nours, Edward M Giles, Richard Berry, Dale I Godfrey, Martin S Davey, Jamie Rossjohn, Benjamin S Gully

Affiliations

  1. Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
  2. Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
  3. Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia.
  4. Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia.
  5. Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC 3010, Australia.
  6. Department of Paediatrics, Monash University, Clayton, VIC 3168, Australia.
  7. Centre for Innate Immunity and Infectious Disease, Hudson Institute of Medicine, Clayton, VIC 3168, Australia.
  8. Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; [email protected] [email protected] [email protected].
  9. Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.

PMID: 34845016 DOI: 10.1073/pnas.2110288118

Abstract

Unlike conventional αβ T cells, γδ T cells typically recognize nonpeptide ligands independently of major histocompatibility complex (MHC) restriction. Accordingly, the γδ T cell receptor (TCR) can potentially recognize a wide array of ligands; however, few ligands have been described to date. While there is a growing appreciation of the molecular bases underpinning variable (V)δ1

Keywords: MR1; structural immunology; γδTCR

Conflict of interest statement

Competing interest statement: J.R. is an inventor on patents describing MR1 tetramers and MR1 ligands.

References

  1. Zheng J., Liu Y., Lau Y.-L., Tu W.. γδ-T cells: An unpolished sword in human anti-infection immunity. Cell. Mol. Immunol.. 2013;10:50–57. - PubMed
  2. Silva-Santos B., Serre K., Norell H.. γδ T cells in cancer. Nat. Rev. Immunol.. 2015;15:683–691. - PubMed
  3. Vantourout P., Hayday A.. Six-of-the-best: Unique contributions of γδ T cells to immunology. Nat. Rev. Immunol.. 2013;13:88–100. - PubMed
  4. De Libero G., et al. Selection by two powerful antigens may account for the presence of the major population of human peripheral gamma/delta T cells. J. Exp. Med.. 1991;173:1311–1322. - PubMed
  5. Dimova T., et al. Effector Vγ9Vδ2 T cells dominate the human fetal γδ T-cell repertoire. Proc. Natl. Acad. Sci. U.S.A.. 2015;112:E556–E565. - PubMed
  6. Davodeau F., et al. Peripheral selection of antigen receptor junctional features in a major human γδ subset. Eur. J. Immunol.. 1993;23:804–808. - PubMed
  7. Parker C. M., et al. Evidence for extrathymic changes in the T cell receptor gamma/delta repertoire. J. Exp. Med.. 1990;171:1597–1612. - PubMed
  8. Morita C. T., Jin C., Sarikonda G., Wang H.. Nonpeptide antigens, presentation mechanisms, and immunological memory of human Vγ2Vδ2 T cells: Discriminating friend from foe through the recognition of prenyl pyrophosphate antigens. Immunol. Rev.. 2007;215:59–76. - PubMed
  9. Costa G., et al. Control of Plasmodium falciparum erythrocytic cycle: γδ T cells target the red blood cell-invasive merozoites. Blood. 2011;118:6952–6962. - PubMed
  10. Sandstrom A., et al. The intracellular B30.2 domain of butyrophilin 3A1 binds phosphoantigens to mediate activation of human Vγ9Vδ2 T cells. Immunity. 2014;40:490–500. - PubMed
  11. Harly C., et al. Key implication of CD277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human γδ T-cell subset. Blood. 2012;120:2269–2279. - PubMed
  12. Rhodes D. A., et al. Activation of human γδ T cells by cytosolic interactions of BTN3A1 with soluble phosphoantigens and the cytoskeletal adaptor periplakin. J. Immunol.. 2015;194:2390–2398. - PubMed
  13. Rigau M., et al. Butyrophilin 2A1 is essential for phosphoantigen reactivity by γδ T cells. Science. 2020;367:eaay5516. - PubMed
  14. Davey M. S., et al. The human Vδ2+ T-cell compartment comprises distinct innate-like Vγ9+ and adaptive Vγ9- subsets. Nat. Commun.. 2018;9:1760. - PubMed
  15. Morita C. T., Parker C. M., Brenner M. B., Band H.. TCR usage and functional capabilities of human gamma delta T cells at birth. J. Immunol.. 1994;153:3979–3988. - PubMed
  16. Deusch K., et al. A major fraction of human intraepithelial lymphocytes simultaneously expresses the γ/δ T cell receptor, the CD8 accessory molecule and preferentially uses the V δ 1 gene segment. Eur. J. Immunol.. 1991;21:1053–1059. - PubMed
  17. Brandtzaeg P., et al. T lymphocytes in human gut epithelium preferentially express the α/β antigen receptor and are often CD45/UCHL1-positive. Scand. J. Immunol.. 1989;30:123–128. - PubMed
  18. Bos J. D., et al. T-cell receptor gamma delta bearing cells in normal human skin. J. Invest. Dermatol.. 1990;94:37–42. - PubMed
  19. Groh V., Steinle A., Bauer S., Spies T.. Recognition of stress-induced MHC molecules by intestinal epithelial γδ T cells. Science. 1998;279:1737–1740. - PubMed
  20. Correia D. V., et al. Differentiation of human peripheral blood Vδ1+ T cells expressing the natural cytotoxicity receptor NKp30 for recognition of lymphoid leukemia cells. Blood. 2011;118:992–1001. - PubMed
  21. Hudspeth K., et al. Engagement of NKp30 on Vδ1 T cells induces the production of CCL3, CCL4, and CCL5 and suppresses HIV-1 replication. Blood. 2012;119:4013–4016. - PubMed
  22. Davey M. S., et al. Clonal selection in the human Vδ1 T cell repertoire indicates γδ TCR-dependent adaptive immune surveillance. Nat. Commun.. 2017;8:14760. - PubMed
  23. Davey M. S., Willcox C. R., Baker A. T., Hunter S., Willcox B. E.. Recasting human Vδ1 lymphocytes in an adaptive role. Trends Immunol.. 2018;39:446–459. - PubMed
  24. Falk M. C., et al. Predominance of T cell receptor Vδ3 in small bowel biopsies from coeliac disease patients. Clin. Exp. Immunol.. 1994;98:78–82. - PubMed
  25. Dunne M. R., et al. Persistent changes in circulating and intestinal γδ T cell subsets, invariant natural killer T cells and mucosal-associated invariant T cells in children and adults with coeliac disease. PLoS One. 2013;8:e76008. - PubMed
  26. Mangan B. A., et al. Cutting edge: CD1d restriction and Th1/Th2/Th17 cytokine secretion by human Vδ3 T cells. J. Immunol.. 2013;191:30–34. - PubMed
  27. Robak E., et al. Lymphocyctes Tgammadelta in clinically normal skin and peripheral blood of patients with systemic lupus erythematosus and their correlation with disease activity. Mediators Inflamm.. 2001;10:179–189. - PubMed
  28. Robak E., et al. Circulating TCR γδ cells in the patients with systemic lupus erythematosus. Mediators Inflamm.. 1999;8:305–312. - PubMed
  29. Déchanet J., et al. Implication of γδ T cells in the human immune response to cytomegalovirus. J. Clin. Invest.. 1999;103:1437–1449. - PubMed
  30. Taupin J. L., et al. An enlarged subpopulation of T lymphocytes bearing two distinct γδ TCR in an HIV-positive patient. Int. Immunol.. 1999;11:545–552. - PubMed
  31. Benveniste P. M., et al. Generation and molecular recognition of melanoma-associated antigen-specific human γδ T cells. Sci. Immunol.. 2018;3:eaav4036. - PubMed
  32. Reijneveld J. F., et al. Human γδ T cells recognize CD1b by two distinct mechanisms. Proc. Natl. Acad. Sci. U.S.A.. 2020;117:22944–22952. - PubMed
  33. Roy S., et al. Molecular analysis of lipid-reactive Vδ1 γδ T cells identified by CD1c tetramers. J. Immunol.. 2016;196:1933–1942. - PubMed
  34. Uldrich A. P., et al. CD1d-lipid antigen recognition by the γδ TCR. Nat. Immunol.. 2013;14:1137–1145. - PubMed
  35. Le Nours J., et al. A class of γδ T cell receptors recognize the underside of the antigen-presenting molecule MR1. Science. 2019;366:1522–1527. - PubMed
  36. Zeng X., et al. γδ T cells recognize a microbial encoded B cell antigen to initiate a rapid antigen-specific interleukin-17 response. Immunity. 2012;37:524–534. - PubMed
  37. Willcox C. R., et al. Cytomegalovirus and tumor stress surveillance by binding of a human γδ T cell antigen receptor to endothelial protein C receptor. Nat. Immunol.. 2012;13:872–879. - PubMed
  38. Luoma A. M., et al. Crystal structure of Vδ1 T cell receptor in complex with CD1d-sulfatide shows MHC-like recognition of a self-lipid by human γδ T cells. Immunity. 2013;39:1032–1042. - PubMed
  39. Eckle S. B. G., et al. A molecular basis underpinning the T cell receptor heterogeneity of mucosal-associated invariant T cells. J. Exp. Med.. 2014;211:1585–1600. - PubMed
  40. Lepore M., et al. Parallel T-cell cloning and deep sequencing of human MAIT cells reveal stable oligoclonal TCRβ repertoire. Nat. Commun.. 2014;5:3866. - PubMed
  41. Patel O., et al. Nat. Commun.. - PubMed
  42. Reantragoon R., et al. Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells. J. Exp. Med.. 2013;210:2305–2320. - PubMed
  43. Corbett A. J., et al. T-cell activation by transitory neo-antigens derived from distinct microbial pathways. Nature. 2014;509:361–365. - PubMed
  44. Kjer-Nielsen L., et al. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature. 2012;491:717–723. - PubMed
  45. Keller A. N., et al. Drugs and drug-like molecules can modulate the function of mucosal-associated invariant T cells. Nat. Immunol.. 2017;18:402–411. - PubMed
  46. Le Bourhis L., et al. Antimicrobial activity of mucosal-associated invariant T cells. Nat. Immunol.. 2010;11:701–708. - PubMed
  47. Koay H.-F., et al. Diverse MR1-restricted T cells in mice and humans. Nat. Commun.. 2019;10:2243. - PubMed
  48. Gherardin N. A., et al. Diversity of T cells restricted by the MHC class I-related molecule MR1 facilitates differential antigen recognition. Immunity. 2016;44:32–45. - PubMed
  49. Bai L., et al. The majority of CD1d-sulfatide-specific T cells in human blood use a semiinvariant Vδ1 TCR. Eur. J. Immunol.. 2012;42:2505–2510. - PubMed
  50. Awad W., et al. The molecular basis underpinning the potency and specificity of MAIT cell antigens. Nat. Immunol.. 2020;21:400–411. - PubMed
  51. Adams E. J., Chien Y.-H., Garcia K. C.. Structure of a γδ T cell receptor in complex with the nonclassical MHC T22. Science. 2005;308:227–231. - PubMed
  52. Wooldridge L., et al. Tricks with tetramers: How to get the most from multimeric peptide-MHC. Immunology. 2009;126:147–164. - PubMed
  53. Marlin R., et al. Sensing of cell stress by human γδ TCR-dependent recognition of annexin A2. Proc. Natl. Acad. Sci. U.S.A.. 2017;114:3163–3168. - PubMed
  54. van Wilgenburg B., et al. MAIT cells contribute to protection against lethal influenza infection in vivo. Nat. Commun.. 2018;9:4706. - PubMed
  55. Gold M. C., et al. Human mucosal associated invariant T cells detect bacterially infected cells. PLoS Biol.. 2010;8:e1000407. - PubMed
  56. Crowther M. D., et al. Genome-wide CRISPR-Cas9 screening reveals ubiquitous T cell cancer targeting via the monomorphic MHC class I-related protein MR1. Nat. Immunol.. 2020;21:178–185. - PubMed
  57. Awad W., et al. Atypical TRAV1-2- T cell receptor recognition of the antigen-presenting molecule MR1. J. Biol. Chem.. 2020;295:14445–14457. - PubMed
  58. Birkinshaw R. W., et al. αβ T cell antigen receptor recognition of CD1a presenting self lipid ligands. Nat. Immunol.. 2015;16:258–266. - PubMed
  59. Wun K. S., et al. T cell autoreactivity directed toward CD1c itself rather than toward carried self lipids. Nat. Immunol.. 2018;19:397–406. - PubMed
  60. Huang S., et al. MR1 uses an endocytic pathway to activate mucosal-associated invariant T cells. J. Exp. Med.. 2008;205:1201–1211. - PubMed
  61. McWilliam H. E. G., et al. The intracellular pathway for the presentation of vitamin B-related antigens by the antigen-presenting molecule MR1. Nat. Immunol.. 2016;17:531–537. - PubMed
  62. Gully B. S., Rossjohn J., Davey M. S.. Our evolving understanding of the role of the γδ T cell receptor in γδ T cell mediated immunity. Biochem. Soc. Trans.. 2021. - PubMed
  63. Crooks G. E., Hon G., Chandonia J. M., Brenner S. E.. WebLogo: A sequence logo generator. Genome Res.. 2004;14:1188–1190. - PubMed
  64. Matsuda J. L., et al. Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J. Exp. Med.. 2000;192:741–754. - PubMed
  65. McPhillips T. M, et al. Blu-Ice and the distributed control system: Software for data acquisition and instrument control at macromolecular crystallography beamlines. J. Synchrotron Radiat.. 2002;9:401–406. - PubMed
  66. Winn M. D., et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr.. 2011;67:235–242. - PubMed
  67. Adams P. D., et al. The Phenix software for automated determination of macromolecular structures. Methods. 2011;55:94–106. - PubMed
  68. Li H., et al. Structure of the Vδ domain of a human γδ T-cell antigen receptor. Nature. 1998;391:502–506. - PubMed
  69. Emsley P., Lohkamp B., Scott W. G., Cowtan K.. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr.. 2010;66:486–501. - PubMed
  70. DeLano W. L.. - PubMed

Publication Types

Grant support