Display options
Share it on

J Pathol. 2021 Jul;254(3):216-228. doi: 10.1002/path.5678. Epub 2021 May 25.

Understanding the implication of autophagy in the activation of hepatic stellate cells in liver fibrosis: are we there yet?.

The Journal of pathology

Federico Lucantoni, Andreu Martínez-Cerezuela, Aleksandra Gruevska, Ángela B Moragrega, Víctor M Víctor, Juan V Esplugues, Ana Blas-García, Nadezda Apostolova

Affiliations

  1. Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain.
  2. FISABIO - Hospital Universitario Doctor Peset, Valencia, Spain.
  3. Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Valencia, Spain.
  4. Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain.

PMID: 33834482 DOI: 10.1002/path.5678

Abstract

Liver fibrosis (LF) occurs as a result of persistent liver injury and can be defined as a pathologic, chronic, wound-healing process in which functional parenchyma is progressively replaced by fibrotic tissue. As a phenomenon involved in the majority of chronic liver diseases, and therefore prevalent, it exerts a significant impact on public health. This impact becomes even more patent given the lack of a specific pharmacological therapy, with LF only being ameliorated or prevented through the use of agents that alleviate the underlying causes. Hepatic stellate cells (HSCs) are fundamental mediators of LF, which, activated in response to pro-fibrotic stimuli, transdifferentiate from a quiescent phenotype into myofibroblasts that deposit large amounts of fibrotic tissue and mediate pro-inflammatory effects. In recent years, much effort has been devoted to understanding the mechanisms through which HSCs are activated or inactivated. Using cell culture and/or different animal models, numerous studies have shown that autophagy is enhanced during the fibrogenic process and have provided specific evidence to pinpoint the fundamental role of autophagy in HSC activation. This effect involves - though may not be limited to - the autophagic degradation of lipid droplets. Several hepatoprotective agents have been shown to reverse the autophagic alteration present in LF, but clinical confirmation of these effects is pending. On the other hand, there is evidence that implicates autophagy in several anti-fibrotic mechanisms in HSCs that stimulate HSC cell cycle arrest and cell death or prevent the generation of pro-fibrotic mediators, including excess collagen accumulation. The objective of this review is to offer a comprehensive analysis of published evidence of the role of autophagy in HSC activation and to provide hints for possible therapeutic targets for the treatment and/or prevention of LF related to autophagy. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.

© 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.

Keywords: LX-2; autophagy; fibrosis resolution; hepatic stellate cells; liver fibrosis; statins

References

  1. Elpek GÖ. Cellular and molecular mechanisms in the pathogenesis of liver fibrosis: an update. World J Gastroenterol 2014; 20: 7260-7276. - PubMed
  2. Campana L, Iredale JP. Regression of liver fibrosis. Semin Liver Dis 2017; 37: 1-10. - PubMed
  3. Bataller R, Brenner DA. Liver fibrosis. J Clin Invest 2005; 115: 209-218. - PubMed
  4. Asrani SK, Devarbhavi H, Eaton J, et al. Burden of liver diseases in the world. J Hepatol 2019; 70: 151-171. - PubMed
  5. Harris R, Harman DJ, Card TR, et al. Prevalence of clinically significant liver disease within the general population, as defined by non-invasive markers of liver fibrosis: a systematic review. Lancet Gastroenterol Hepatol 2017; 2: 288-297. - PubMed
  6. Caballería L, Pera G, Arteaga I, et al. High prevalence of liver fibrosis among European adults with unknown liver disease: a population-based study. Clin Gastroenterol Hepatol 2018; 16: 1138-1145.e5. - PubMed
  7. Bellentani S. The epidemiology of non-alcoholic fatty liver disease. Liver Int 2017; 37(Suppl 1): 81-84. - PubMed
  8. Rockey DC. Liver fibrosis reversion after suppression of hepatitis B virus. Clin Liver Dis 2016; 20: 667-679. - PubMed
  9. Corrado RL, Torres DM, Harrison SA. Review of treatment options for nonalcoholic fatty liver disease. Med Clin North Am 2014; 98: 55-72. - PubMed
  10. de Mesquita FC, Guixé-Muntet S, Fernández-Iglesias A, et al. Liraglutide improves liver microvascular dysfunction in cirrhosis: evidence from translational studies. Sci Rep 2017; 7: 3255. - PubMed
  11. Lee YA, Wallace MC, Friedman SL. Pathobiology of liver fibrosis: a translational success story. Gut 2015; 64: 830-841. - PubMed
  12. Dikic I, Elazar Z. Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 2018; 19: 349-364. - PubMed
  13. Yu L, Chen Y, Tooze SA. Autophagy pathway: cellular and molecular mechanisms. Autophagy 2018; 14: 207-215. - PubMed
  14. Parzych KR, Klionsky DJ. An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal 2014; 20: 460-473. - PubMed
  15. Allaire M, Rautou PE, Codogno P, et al. Autophagy in liver diseases: time for translation? J Hepatol 2019; 70: 985-998. - PubMed
  16. Ni HM, Williams JA, Yang H, et al. Targeting autophagy for the treatment of liver diseases. Pharmacol Res 2012; 66: 463-474. - PubMed
  17. Puri P, Chandra A. Autophagy modulation as a potential therapeutic target for liver diseases. J Clin Exp Hepatol 2014; 4: 51-59. - PubMed
  18. Mao YQ, Fan XM. Autophagy: a new therapeutic target for liver fibrosis. World J Hepatol 2015; 7: 1982-1986. - PubMed
  19. Khambu B, Yan S, Huda N, et al. Homeostatic role of autophagy in hepatocytes. Semin Liver Dis 2018; 38: 308-319. - PubMed
  20. Ni HM, Woolbright BL, Williams J, et al. Nrf2 promotes the development of fibrosis and tumorigenesis in mice with defective hepatic autophagy. J Hepatol 2014; 61: 617-625. - PubMed
  21. Lalazar G, Ilyas G, Malik SA, et al. Autophagy confers resistance to lipopolysaccharide-induced mouse hepatocyte injury. Am J Physiol Gastrointest Liver Physiol 2016; 311: G377-G386. - PubMed
  22. Amir M, Zhao E, Fontana L, et al. Inhibition of hepatocyte autophagy increases tumor necrosis factor-dependent liver injury by promoting caspase-8 activation. Cell Death Differ 2013; 20: 878-887. - PubMed
  23. Hazari Y, Bravo-San Pedro JM, Hetz C, et al. Autophagy in hepatic adaptation to stress. J Hepatol 2020; 72: 183-196. - PubMed
  24. Ilyas G, Zhao E, Liu K, et al. Macrophage autophagy limits acute toxic liver injury in mice through down regulation of interleukin-1β. J Hepatol 2016; 64: 118-127. - PubMed
  25. Liu K, Zhao E, Ilyas G, et al. Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization. Autophagy 2015; 11: 271-284. - PubMed
  26. Lodder J, Denaës T, Chobert MN, et al. Macrophage autophagy protects against liver fibrosis in mice. Autophagy 2015; 11: 1280-1292. - PubMed
  27. Zhong Z, Umemura A, Sanchez-Lopez E, et al. NF-κB restricts inflammasome activation via elimination of damaged mitochondria. Cell 2016; 164: 896-910. - PubMed
  28. Ruart M, Chavarria L, Campreciós G, et al. Impaired endothelial autophagy promotes liver fibrosis by aggravating the oxidative stress response during acute liver injury. J Hepatol 2019; 70: 458-469. - PubMed
  29. Hilscher M, Hernandez-Gea V, Friedman SL. Autophagy and mesenchymal cell fibrogenesis. Biochim Biophys Acta 2012; 1831: 972-978. - PubMed
  30. Rangarajan S, Kurundkar A, Kurundkar D, et al. Novel mechanisms for the antifibrotic action of nintedanib. Am J Respir Cell Mol Biol 2016; 54: 51-59. - PubMed
  31. Yu JZ, Ying Y, Liu Y, et al. Antifibrotic action of Yifei Sanjie formula enhanced autophagy via PI3K-AKT-mTOR signaling pathway in mouse model of pulmonary fibrosis. Biomed Pharmacother 2019; 118: 109293. - PubMed
  32. Hernández-Gea V, Ghiassi-Nejad Z, Rozenfeld R, et al. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 2012; 142: 938-946. - PubMed
  33. Thoen LF, Guimarães EL, Dollé L, et al. A role for autophagy during hepatic stellate cell activation. J Hepatol 2011; 55: 1353-1360. - PubMed
  34. Wu L, Zhang Q, Mo W, et al. Quercetin prevents hepatic fibrosis by inhibiting hepatic stellate cell activation and reducing autophagy via the TGF-β1/Smads and PI3K/Akt pathways. Sci Rep 2017; 7: 9289. - PubMed
  35. Feng J, Chen K, Xia Y, et al. Salidroside ameliorates autophagy and activation of hepatic stellate cells in mice via NF-κB and TGF-β1/Smad3 pathways. Drug Des Devel Ther 2018; 12: 1837-1853. - PubMed
  36. Yang R, Hu Z, Zhang P, et al. Probucol ameliorates hepatic stellate cell activation and autophagy is associated with farnesoid X receptor. J Pharmacol Sci 2019; 139: 120-128. - PubMed
  37. Ma JQ, Sun YZ, Ming QL, et al. Ampelopsin attenuates carbon tetrachloride-induced mouse liver fibrosis and hepatic stellate cell activation associated with the SIRT1/TGF-β1/Smad3 and autophagy pathway. Int Immunopharmacol 2019; 77: 105984. - PubMed
  38. Wang B, Yang H, Fan Y, et al. 3-Methyladenine ameliorates liver fibrosis through autophagy regulated by the NF-κB signaling pathways on hepatic stellate cell. Oncotarget 2017; 8: 107603-107611. - PubMed
  39. Zhao J, Peng L, Cui R, et al. Dimethyl α-ketoglutarate reduces CCl₄-induced liver fibrosis through inhibition of autophagy in hepatic stellate cells. Biochem Biophys Res Commun 2016; 481: 90-96. - PubMed
  40. Zhang Z, Zhao S, Yao Z, et al. Autophagy regulates turnover of lipid droplets via ROS-dependent Rab25 activation in hepatic stellate cell. Redox Biol 2017; 11: 322-334. - PubMed
  41. Huang TJ, Ren JJ, Zhang QQ, et al. IGFBPrP1 accelerates autophagy and activation of hepatic stellate cells via mutual regulation between H19 and PI3K/AKT/mTOR pathway. Biomed Pharmacother 2019; 116: 109034. - PubMed
  42. Wang Z, Tao Y, Qiu T, et al. Taurine protected As₂O₃-induced activation of hepatic stellate cells through inhibiting PPARα-autophagy pathway. Chem Biol Interact 2019; 300: 123-130. - PubMed
  43. Deng J, Huang Q, Wang Y, et al. Hypoxia-inducible factor-1alpha regulates autophagy to activate hepatic stellate cells. Biochem Biophys Res Commun 2014; 454: 328-334. - PubMed
  44. Kong Y, Huang T, Zhang H, et al. The lncRNA NEAT1/miR-29b/Atg9a axis regulates IGFBPrP1-induced autophagy and activation of mouse hepatic stellate cells. Life Sci 2019; 237: 116902. - PubMed
  45. Xie ZY, Xiao ZH, Wang FF. Inhibition of autophagy reverses alcohol-induced hepatic stellate cells activation through activation of Nrf2-Keap1-ARE signaling pathway. Biochimie 2018; 147: 55-62. - PubMed
  46. Xie ZY, Wang FF, Xiao ZH, et al. Long noncoding RNA XIST enhances ethanol-induced hepatic stellate cells autophagy and activation via miR-29b/HMGB1 axis. IUBMB Life 2019; 71: 1962-1972. - PubMed
  47. He W, Wang B, Yang J, et al. Chloroquine improved carbon tetrachloride-induced liver fibrosis through its inhibition of the activation of hepatic stellate cells: role of autophagy. Biol Pharm Bull 2014; 37: 1505-1509. - PubMed
  48. Wang Y, Sun Y, Zuo L, et al. ASIC1a promotes high glucose and PDGF-induced hepatic stellate cell activation by inducing autophagy through CaMKKβ/ERK signaling pathway. Toxicol Lett 2019; 300: 1-9. - PubMed
  49. Yang N, Dang S, Shi J, et al. Caffeic acid phenethyl ester attenuates liver fibrosis via inhibition of TGF-β1/Smad3 pathway and induction of autophagy pathway. Biochem Biophys Res Commun 2017; 486: 22-28. - PubMed
  50. He YL, Zhu JQ, Huang YQ, et al. Advanced glycation end product (AGE)-induced hepatic stellate cell activation via autophagy contributes to hepatitis C-related fibrosis. Acta Diabetol 2015; 52: 959-969. - PubMed
  51. Fu MY, He YJ, Lv X, et al. Transforming growth factor-β1 reduces apoptosis via autophagy activation in hepatic stellate cells. Mol Med Rep 2014; 10: 1282-1288. - PubMed
  52. Li J, Zeng C, Zheng B, et al. HMGB1-induced autophagy facilitates hepatic stellate cells activation: a new pathway in liver fibrosis. Clin Sci (Lond) 2018; 132: 1645-1667. - PubMed
  53. Arriola Benitez PC, Pesce Viglietti AI, Herrmann CK, et al. Brucella abortus promotes a fibrotic phenotype in hepatic stellate cells, with concomitant activation of the autophagy pathway. Infect Immun 2017; 86: e00522-e00517. - PubMed
  54. Chen M, Liu J, Yang L, et al. AMP-activated protein kinase regulates lipid metabolism and the fibrotic phenotype of hepatic stellate cells through inhibition of autophagy. FEBS Open Bio 2017; 7: 811-820. - PubMed
  55. Lin M, Chang Y, Xie F, et al. ASPP2 inhibits the profibrotic effects of transforming growth factor-β1 in hepatic stellate cells by reducing autophagy. Dig Dis Sci 2018; 63: 146-154. - PubMed
  56. Hong Y, Li S, Wang J, et al. In vitro inhibition of hepatic stellate cell activation by the autophagy-related lipid droplet protein ATG2A. Sci Rep 2018; 8: 9232. - PubMed
  57. Zhou Y, Zhang Q, Kong Y, et al. Insulin-like growth factor binding protein-related protein 1 activates primary hepatic stellate cells via autophagy regulated by the PI3K/Akt/mTOR signaling pathway. Dig Dis Sci 2020; 65: 509-523. - PubMed
  58. Jin Y, Bai Y, Ni H, et al. Activation of autophagy through calcium-dependent AMPK/mTOR and PKCθ pathway causes activation of rat hepatic stellate cells under hypoxic stress. FEBS Lett 2016; 590: 672-682. - PubMed
  59. Kim KM, Han CY, Kim JY, et al. Gα12 overexpression induced by miR-16 dysregulation contributes to liver fibrosis by promoting autophagy in hepatic stellate cells. J Hepatol 2018; 68: 493-504. - PubMed
  60. Yu K, Li N, Cheng Q, et al. miR-96-5p prevents hepatic stellate cell activation by inhibiting autophagy via ATG7. J Mol Med (Berl) 2018; 96: 65-74. - PubMed
  61. Qu Y, Zhang Q, Cai X, et al. Exosomes derived from miR-181-5p-modified adipose-derived mesenchymal stem cells prevent liver fibrosis via autophagy activation. J Cell Mol Med 2017; 21: 2491-2502. - PubMed
  62. Zhu J, Wu J, Frizell E, et al. Rapamycin inhibits hepatic stellate cell proliferation in vitro and limits fibrogenesis in an in vivo model of liver fibrosis. Gastroenterology 1999; 117: 1198-1204. - PubMed
  63. Chen W, Zhang Z, Yao Z, et al. Activation of autophagy is required for oroxylin A to alleviate carbon tetrachloride-induced liver fibrosis and hepatic stellate cell activation. Int Immunopharmacol 2018; 56: 148-155. - PubMed
  64. Zhang Z, Yao Z, Zhao S, et al. Interaction between autophagy and senescence is required for dihydroartemisinin to alleviate liver fibrosis. Cell Death Dis 2017; 8: e2886. - PubMed
  65. Zhang XL, Chen ZN, Huang QF, et al. Methyl helicterate inhibits hepatic stellate cell activation through modulation of apoptosis and autophagy. Cell Physiol Biochem 2018; 51: 897-908. - PubMed
  66. Piguet AC, Majumder S, Maheshwari U, et al. Everolimus is a potent inhibitor of activated hepatic stellate cell functions in vitro and in vivo, while demonstrating anti-angiogenic activities. Clin Sci (Lond) 2014; 126: 775-784. - PubMed
  67. Choi YY, Seok JI, Hwang JI, et al. Co-administration of everolimus and N-acetylcysteine attenuates hepatic stellate cell activation and hepatic fibrosis. Am J Transl Res 2020; 12: 2627-2639. - PubMed
  68. Li Y, Chen Y, Huang H, et al. Autophagy mediated by endoplasmic reticulum stress enhances the caffeine-induced apoptosis of hepatic stellate cells. Int J Mol Med 2017; 40: 1405-1414. - PubMed
  69. Seo HY, Jang BK, Jung YA, et al. Phospholipase D1 decreases type I collagen levels in hepatic stellate cells via induction of autophagy. Biochem Biophys Res Commun 2014; 449: 38-43. - PubMed
  70. Gao J, Wei B, de Assuncao TM, et al. Hepatic stellate cell autophagy inhibits extracellular vesicle release to attenuate liver fibrosis. J Hepatol 2020; 73: 1144-1154. - PubMed
  71. Zhang XW, Zhou JC, Peng D, et al. Disrupting the TRIB3-SQSTM1 interaction reduces liver fibrosis by restoring autophagy and suppressing exosome-mediated HSC activation. Autophagy 2020; 16: 782-796. - PubMed
  72. Duran A, Hernandez ED, Reina-Campos M, et al. p62/SQSTM1 by binding to vitamin D receptor inhibits hepatic stellate cell activity, fibrosis, and liver cancer. Cancer Cell 2016; 30: 595-609. - PubMed
  73. Umemura A, He F, Taniguchi K, et al. p62, upregulated during preneoplasia, induces hepatocellular carcinogenesis by maintaining survival of stressed HCC-initiating cells. Cancer Cell 2016; 29: 935-948. - PubMed
  74. Fausther M, Lavoie EG, Dranoff JA. Contribution of myofibroblasts of different origins to liver fibrosis. Curr Pathobiol Rep 2013; 1: 225-230. - PubMed
  75. Kong D, Zhang Z, Chen L, et al. Curcumin blunts epithelial-mesenchymal transition of hepatocytes to alleviate hepatic fibrosis through regulating oxidative stress and autophagy. Redox Biol 2020; 36: 101600. - PubMed
  76. Ke PY. Diverse functions of autophagy in liver physiology and liver diseases. Int J Mol Sci 2019; 20: 300. - PubMed
  77. Pose E, Trebicka J, Mookerjee RP, et al. Statins: old drugs as new therapy for liver diseases? J Hepatol 2019; 70: 194-202. - PubMed
  78. Schierwagen R, Uschner FE, Magdaleno F, et al. Rationale for the use of statins in liver disease. Am J Physiol Gastrointest Liver Physiol 2017; 312: G407-G412. - PubMed
  79. Weiskirchen R. Hepatoprotective and anti-fibrotic agents: it's time to take the next step. Front Pharmacol 2016; 6: 303. - PubMed
  80. Wang HJ, Park JY, Kwon O, et al. Chronic HMGCR/HMG-CoA reductase inhibitor treatment contributes to dysglycemia by upregulating hepatic gluconeogenesis through autophagy induction. Autophagy 2015; 11: 2089-2101. - PubMed
  81. Vescovo T, Refolo G, Manuelli MC, et al. The impact of mevastatin on HCV replication and autophagy of non-transformed HCV replicon hepatocytes is influenced by the extracellular lipid uptake. Front Pharmacol 2019; 10: 718. - PubMed
  82. Guixé-Muntet S, de Mesquita FC, Vila S, et al. Cross-talk between autophagy and KLF2 determines endothelial cell phenotype and microvascular function in acute liver injury. J Hepatol 2017; 66: 86-94. - PubMed
  83. Ghavami S, Yeganeh B, Stelmack GL, et al. Apoptosis, autophagy and ER stress in mevalonate cascade inhibition-induced cell death of human atrial fibroblasts. Cell Death Dis 2012; 3: e330. - PubMed
  84. Ghavami S, Mutawe MM, Sharma P, et al. Mevalonate cascade regulation of airway mesenchymal cell autophagy and apoptosis: a dual role for p53. PLoS One 2011; 6: e16523. - PubMed
  85. Chen Z, Jain A, Liu H, et al. Targeted drug delivery to hepatic stellate cells for the treatment of liver fibrosis. J Pharmacol Exp Ther 2019; 370: 695-702. - PubMed
  86. Li Y, Pu S, Liu Q, et al. An integrin-based nanoparticle that targets activated hepatic stellate cells and alleviates liver fibrosis. J Control Release 2019; 303: 77-90. - PubMed

Publication Types