Display options
Share it on

Genome Res. 2021 Nov 23; doi: 10.1101/gr.268482.120. Epub 2021 Nov 23.

Human and rat skeletal muscle single-nuclei multi-omic integrative analyses nominate causal cell types, regulatory elements, and SNPs for complex traits.

Genome research

Peter Orchard, Nandini Manickam, Christa Ventresca, Swarooparani Vadlamudi, Arushi Varshney, Vivek Rai, Jeremy Kaplan, Claudia Lalancette, Karen L Mohlke, Katherine Gallagher, Charles F Burant, Stephen C J Parker

Affiliations

  1. Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA.
  2. Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA.
  3. Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
  4. Epigenomics Core, University of Michigan, Ann Arbor, Michigan 48109, USA.
  5. Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109, USA.
  6. Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, USA.
  7. Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA.
  8. Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, USA.

PMID: 34815310 PMCID: PMC8647829 DOI: 10.1101/gr.268482.120

Abstract

Skeletal muscle accounts for the largest proportion of human body mass, on average, and is a key tissue in complex diseases and mobility. It is composed of several different cell and muscle fiber types. Here, we optimize single-nucleus ATAC-seq (snATAC-seq) to map skeletal muscle cell-specific chromatin accessibility landscapes in frozen human and rat samples, and single-nucleus RNA-seq (snRNA-seq) to map cell-specific transcriptomes in human. We additionally perform multi-omics profiling (gene expression and chromatin accessibility) on human and rat muscle samples. We capture type I and type II muscle fiber signatures, which are generally missed by existing single-cell RNA-seq methods. We perform cross-modality and cross-species integrative analyses on 33,862 nuclei and identify seven cell types ranging in abundance from 59.6% to 1.0% of all nuclei. We introduce a regression-based approach to infer cell types by comparing transcription start site-distal ATAC-seq peaks to reference enhancer maps and show consistency with RNA-based marker gene cell type assignments. We find heterogeneity in enrichment of genetic variants linked to complex phenotypes from the UK Biobank and diabetes genome-wide association studies in cell-specific ATAC-seq peaks, with the most striking enrichment patterns in muscle mesenchymal stem cells (∼3.5% of nuclei). Finally, we overlay these chromatin accessibility maps on GWAS data to nominate causal cell types, SNPs, transcription factor motifs, and target genes for type 2 diabetes signals. These chromatin accessibility profiles for human and rat skeletal muscle cell types are a useful resource for nominating causal GWAS SNPs and cell types.

© 2021 Orchard et al.; Published by Cold Spring Harbor Laboratory Press.

References

  1. Nat Genet. 2012 May 13;44(6):659-69 - PubMed
  2. Mol Cell. 2018 Sep 6;71(5):858-871.e8 - PubMed
  3. Proc Natl Acad Sci U S A. 2013 Oct 29;110(44):17921-6 - PubMed
  4. Bioinformatics. 2009 Jul 15;25(14):1754-60 - PubMed
  5. Nat Commun. 2019 Jul 2;10(1):2907 - PubMed
  6. Cell Rep. 2019 Mar 26;26(13):3784-3797.e8 - PubMed
  7. Nat Methods. 2021 Nov;18(11):1333-1341 - PubMed
  8. Sci Adv. 2020 May 08;6(19):eaaz7492 - PubMed
  9. Nat Methods. 2015 Nov;12(11):1061-3 - PubMed
  10. Bioinformatics. 2010 Sep 1;26(17):2204-7 - PubMed
  11. Bioinformatics. 2011 Apr 1;27(7):1017-8 - PubMed
  12. J Lipid Res. 2014 Mar;55(3):375-84 - PubMed
  13. Diabetes. 2013 Mar;62(3):987-92 - PubMed
  14. Development. 2019 Apr 11;146(12): - PubMed
  15. Nat Neurosci. 2018 Mar;21(3):432-439 - PubMed
  16. Nature. 2020 Aug;584(7820):244-251 - PubMed
  17. Nat Genet. 2014 Feb;46(2):136-143 - PubMed
  18. Cell. 2020 Nov 12;183(4):1103-1116.e20 - PubMed
  19. Cell Death Dis. 2019 Jun 3;10(6):427 - PubMed
  20. Elife. 2015 Jun 25;4:e06821 - PubMed
  21. Stem Cells. 2007 Oct;25(10):2448-59 - PubMed
  22. FEBS J. 2013 Sep;280(17):4100-8 - PubMed
  23. Circ Res. 2020 Jan 31;126(3):330-346 - PubMed
  24. Genes Dev. 2008 Mar 15;22(6):711-21 - PubMed
  25. Cells. 2020 Apr 22;9(4): - PubMed
  26. PLoS Genet. 2014 Sep 11;10(9):e1004633 - PubMed
  27. Am J Physiol Endocrinol Metab. 2013 Mar 1;304(5):E453-65 - PubMed
  28. Bioinformatics. 2016 Jul 15;32(14):2196-8 - PubMed
  29. Genome Biol. 2020 Jun 2;21(1):130 - PubMed
  30. Genome Biol. 2019 Dec 23;20(1):296 - PubMed
  31. Nature. 2015 Jul 23;523(7561):486-90 - PubMed
  32. iScience. 2020 Apr 24;23(4):100993 - PubMed
  33. Cell. 2000 Sep 15;102(6):777-86 - PubMed
  34. Mol Cell Endocrinol. 1993 Feb;91(1-2):1-11 - PubMed
  35. Mol Metab. 2020 Feb;32:109-121 - PubMed
  36. Nucleic Acids Res. 2017 May 5;45(8):4344-4358 - PubMed
  37. Nucleic Acids Res. 2019 Feb 28;47(4):1653-1670 - PubMed
  38. Arterioscler Thromb Vasc Biol. 2011 Jul;31(7):1495-505 - PubMed
  39. J Appl Physiol (1985). 2000 Jul;89(1):81-8 - PubMed
  40. Arch Immunol Ther Exp (Warsz). 2018 Oct;66(5):341-354 - PubMed
  41. Nucleic Acids Res. 1999 Jan 15;27(2):573-80 - PubMed
  42. Genome Biol. 2019 Mar 22;20(1):63 - PubMed
  43. Skelet Muscle. 2020 Jul 6;10(1):19 - PubMed
  44. Aging Cell. 2020 Oct;19(10):e13223 - PubMed
  45. Cell. 2019 Jun 13;177(7):1873-1887.e17 - PubMed
  46. Nature. 2020 Jul;583(7818):699-710 - PubMed
  47. Am J Physiol. 1989 Oct;257(4 Pt 1):E567-72 - PubMed
  48. Nat Commun. 2016 Jul 07;7:12098 - PubMed
  49. Nature. 2015 Feb 19;518(7539):317-30 - PubMed
  50. Elife. 2020 Oct 01;9: - PubMed
  51. Cell Rep. 2020 Mar 10;30(10):3583-3595.e5 - PubMed
  52. Nat Biotechnol. 2018 Jun;36(5):411-420 - PubMed
  53. Nature. 2012 Sep 6;489(7414):57-74 - PubMed
  54. Sci Data. 2019 Apr 23;6(1):39 - PubMed
  55. Mol Cell Endocrinol. 2004 Oct 15;225(1-2):29-36 - PubMed
  56. PLoS Genet. 2009 Dec;5(12):e1000768 - PubMed
  57. Nat Med. 2012 Jul;18(7):1095-101 - PubMed
  58. Mol Cell. 2019 May 2;74(3):609-621.e6 - PubMed
  59. Genome Res. 2014 Jun;24(6):999-1011 - PubMed
  60. Nat Genet. 2015 Dec;47(12):1415-25 - PubMed
  61. PLoS One. 2011 Feb 22;6(2):e16807 - PubMed
  62. Nat Methods. 2013 Dec;10(12):1213-8 - PubMed
  63. Nature. 2010 Aug 5;466(7307):707-13 - PubMed
  64. G3 (Bethesda). 2019 Aug 8;9(8):2521-2533 - PubMed
  65. Diabetes. 2021 Jul;70(7):1581-1591 - PubMed
  66. Nucleic Acids Res. 2018 Jan 4;46(D1):D762-D769 - PubMed
  67. Nat Methods. 2017 Oct;14(10):975-978 - PubMed
  68. Nat Genet. 2015 Nov;47(11):1228-35 - PubMed
  69. Genome Biol. 2008;9(9):R137 - PubMed
  70. Proc Natl Acad Sci U S A. 2017 Feb 28;114(9):2301-2306 - PubMed
  71. F1000Res. 2017 Jan 11;6:32 - PubMed
  72. Front Cell Dev Biol. 2018 Apr 04;6:33 - PubMed
  73. Genome Res. 2002 Jun;12(6):996-1006 - PubMed
  74. Int J Biochem Cell Biol. 1998 Oct;30(10):1087-93 - PubMed
  75. Nat Genet. 2017 Oct;49(10):1421-1427 - PubMed
  76. Cell Stem Cell. 2020 Jul 2;27(1):158-176.e10 - PubMed
  77. Cell Rep. 2016 Nov 15;17(8):2042-2059 - PubMed
  78. Front Physiol. 2018 Oct 12;9:1450 - PubMed
  79. Nat Genet. 2018 Nov;50(11):1505-1513 - PubMed
  80. Bioinformatics. 2013 Jan 1;29(1):15-21 - PubMed
  81. J Mol Biol. 2020 Mar 6;432(5):1551-1578 - PubMed
  82. Oncogene. 2007 Oct 15;26(47):6816-28 - PubMed
  83. Cell Syst. 2020 Mar 25;10(3):298-306.e4 - PubMed
  84. Nature. 2015 Oct 1;526(7571):68-74 - PubMed
  85. Nat Methods. 2021 Jun;18(6):635-642 - PubMed
  86. Elife. 2019 Nov 26;8: - PubMed
  87. NPJ Regen Med. 2019 Dec 2;4:22 - PubMed
  88. Mech Dev. 1997 Apr;63(1):39-50 - PubMed
  89. Calcif Tissue Int. 2015 Mar;96(3):183-95 - PubMed
  90. Nat Biotechnol. 2018 Jan;36(1):89-94 - PubMed
  91. Dev Biol. 2004 Jun 1;270(1):19-30 - PubMed
  92. Nat Commun. 2016 Jun 29;7:11764 - PubMed
  93. Nat Genet. 2014 Mar;46(3):234-44 - PubMed
  94. Nat Genet. 2015 Aug;47(8):955-61 - PubMed
  95. Science. 2012 Sep 7;337(6099):1190-5 - PubMed
  96. Nucleic Acids Res. 2014 Mar;42(5):2976-87 - PubMed
  97. Genome Res. 2012 Sep;22(9):1748-59 - PubMed
  98. Genome Biol. 2018 Dec 19;19(1):224 - PubMed
  99. Curr Protoc Bioinformatics. 2014 Sep 08;47:11.12.1-34 - PubMed
  100. Cell. 2019 Jun 13;177(7):1888-1902.e21 - PubMed
  101. Epigenetics Chromatin. 2015 Jul 16;8:23 - PubMed
  102. Bioinformatics. 2010 Sep 15;26(18):2336-7 - PubMed
  103. PLoS Med. 2015 Mar 31;12(3):e1001779 - PubMed
  104. Development. 2012 Aug;139(16):2845-56 - PubMed
  105. Wiley Interdiscip Rev Dev Biol. 2016 Jul;5(4):518-34 - PubMed
  106. Genome Biol. 2020 Mar 5;21(1):57 - PubMed
  107. Sci Rep. 2020 Jul 3;10(1):11019 - PubMed
  108. Nature. 2018 Oct;562(7727):367-372 - PubMed
  109. Sci Transl Med. 2009 Nov 11;1(6):6ra15 - PubMed
  110. Hum Mol Genet. 2014 Sep 1;23(17):4738-44 - PubMed
  111. Bioinformatics. 2009 Aug 15;25(16):2078-9 - PubMed
  112. PLoS Comput Biol. 2014 Jul 17;10(7):e1003711 - PubMed
  113. Nat Commun. 2018 May 14;9(1):1864 - PubMed
  114. Nat Commun. 2017 Jan 16;8:14049 - PubMed
  115. Elife. 2018 Feb 07;7: - PubMed
  116. PLoS Med. 2018 Sep 21;15(9):e1002654 - PubMed
  117. Bioinformatics. 2019 Jul 15;35(14):i173-i182 - PubMed
  118. Sci Rep. 2020 Jan 14;10(1):229 - PubMed
  119. Gene. 2017 Dec 15;636:54-63 - PubMed
  120. J Appl Physiol (1985). 2012 May;112(10):1625-36 - PubMed

Publication Types

Grant support