Display options
Share it on

Cell. 2021 May 27;184(11):3022-3040.e28. doi: 10.1016/j.cell.2021.04.011. Epub 2021 May 06.

Dual proteome-scale networks reveal cell-specific remodeling of the human interactome.

Cell

Edward L Huttlin, Raphael J Bruckner, Jose Navarrete-Perea, Joe R Cannon, Kurt Baltier, Fana Gebreab, Melanie P Gygi, Alexandra Thornock, Gabriela Zarraga, Stanley Tam, John Szpyt, Brandon M Gassaway, Alexandra Panov, Hannah Parzen, Sipei Fu, Arvene Golbazi, Eila Maenpaa, Keegan Stricker, Sanjukta Guha Thakurta, Tian Zhang, Ramin Rad, Joshua Pan, David P Nusinow, Joao A Paulo, Devin K Schweppe, Laura Pontano Vaites, J Wade Harper, Steven P Gygi

Affiliations

  1. Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA. Electronic address: [email protected].
  2. Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
  3. Broad Institute, Cambridge, MA 02142, USA.
  4. Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA. Electronic address: [email protected].
  5. Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA. Electronic address: [email protected].

PMID: 33961781 PMCID: PMC8165030 DOI: 10.1016/j.cell.2021.04.011

Abstract

Thousands of interactions assemble proteins into modules that impart spatial and functional organization to the cellular proteome. Through affinity-purification mass spectrometry, we have created two proteome-scale, cell-line-specific interaction networks. The first, BioPlex 3.0, results from affinity purification of 10,128 human proteins-half the proteome-in 293T cells and includes 118,162 interactions among 14,586 proteins. The second results from 5,522 immunoprecipitations in HCT116 cells. These networks model the interactome whose structure encodes protein function, localization, and complex membership. Comparison across cell lines validates thousands of interactions and reveals extensive customization. Whereas shared interactions reside in core complexes and involve essential proteins, cell-specific interactions link these complexes, "rewiring" subnetworks within each cell's interactome. Interactions covary among proteins of shared function as the proteome remodels to produce each cell's phenotype. Viewable interactively online through BioPlexExplorer, these networks define principles of proteome organization and enable unknown protein characterization.

Copyright © 2021 Elsevier Inc. All rights reserved.

Keywords: AP-MS; BioPlex; bioinformatics; cell specificity; computational biology; human interactome; network biology; protein interactions; proteomics; proteotypes

Conflict of interest statement

Declaration of interests J.W.H. is a founder and scientific advisory board member of Caraway Therapeutics and a Founding Scientific Advisor for Interline Therapeutics.

References

  1. J Proteome Res. 2018 Jun 1;17(6):2226-2236 - PubMed
  2. Gene. 2015 Sep 15;569(2):182-90 - PubMed
  3. Cell Syst. 2015 Oct 28;1(4):302-305 - PubMed
  4. Cell Syst. 2017 Oct 25;5(4):399-409.e5 - PubMed
  5. Mol Cell. 2017 Apr 20;66(2):270-284.e13 - PubMed
  6. Nucleic Acids Res. 2019 Jan 8;47(D1):D427-D432 - PubMed
  7. EMBO Rep. 2008 Jul;9(7):636-41 - PubMed
  8. Cell. 2018 Nov 15;175(5):1393-1404.e11 - PubMed
  9. Nucleic Acids Res. 2019 Jan 8;47(D1):D559-D563 - PubMed
  10. Nat Methods. 2007 Mar;4(3):207-14 - PubMed
  11. Cell. 2015 Oct 22;163(3):712-23 - PubMed
  12. Cell. 2012 Aug 31;150(5):1068-81 - PubMed
  13. Cell. 2014 Nov 20;159(5):1212-1226 - PubMed
  14. J Cell Sci. 2018 Jan 8;131(1): - PubMed
  15. Nat Rev Mol Cell Biol. 2006 Oct;7(10):713-26 - PubMed
  16. Nat Rev Cancer. 2013 Aug;13(8):585-95 - PubMed
  17. Mol Syst Biol. 2019 Feb 18;15(2):e8503 - PubMed
  18. Nucleic Acids Res. 2020 Jul 9;48(12):6980-6995 - PubMed
  19. Oncogenesis. 2013 Sep 16;2:e71 - PubMed
  20. J Am Soc Mass Spectrom. 1994 Nov;5(11):976-89 - PubMed
  21. Nat Methods. 2013 Apr;10(4):307-14 - PubMed
  22. Nat Rev Mol Cell Biol. 2016 Apr;17(4):240-56 - PubMed
  23. Nature. 2015 Sep 24;525(7570):523-7 - PubMed
  24. Science. 2013 Mar 29;339(6127):1546-58 - PubMed
  25. Cell. 2009 Jul 23;138(2):389-403 - PubMed
  26. Nat Rev Mol Cell Biol. 2019 Apr;20(4):199-210 - PubMed
  27. Nat Commun. 2016 May 13;7:11491 - PubMed
  28. Science. 2015 Nov 27;350(6264):1092-6 - PubMed
  29. Science. 2015 Nov 27;350(6264):1096-101 - PubMed
  30. Nucleic Acids Res. 2000 Jan 1;28(1):235-42 - PubMed
  31. Cell Syst. 2018 May 23;6(5):555-568.e7 - PubMed
  32. Mol Cell. 2018 Feb 1;69(3):517-532.e11 - PubMed
  33. Nature. 2010 Jul 1;466(7302):68-76 - PubMed
  34. Nucleic Acids Res. 2018 Jul 2;46(W1):W60-W64 - PubMed
  35. Science. 2017 May 26;356(6340): - PubMed
  36. Mol Syst Biol. 2018 Dec 20;14(12):e8594 - PubMed
  37. Nat Genet. 2000 May;25(1):25-9 - PubMed
  38. Cell. 2011 Oct 28;147(3):690-703 - PubMed
  39. Cell. 2015 Jul 16;162(2):425-440 - PubMed
  40. EMBO J. 2010 Dec 15;29(24):4172-84 - PubMed
  41. Anal Chem. 2014 Jul 15;86(14):7150-8 - PubMed
  42. Am J Hum Genet. 2008 Apr;82(4):959-70 - PubMed
  43. Nucleic Acids Res. 2017 Jan 4;45(D1):D833-D839 - PubMed
  44. Mol Syst Biol. 2021 May;17(5):e10016 - PubMed
  45. BMC Genomics. 2018 Oct 19;19(1):758 - PubMed
  46. Nature. 2002 Jan 10;415(6868):180-3 - PubMed
  47. Antiviral Res. 2013 Feb;97(2):122-36 - PubMed
  48. Nature. 2006 Mar 30;440(7084):637-43 - PubMed
  49. Cell Res. 2009 Feb;19(2):156-72 - PubMed
  50. Nat Methods. 2011 Jun 26;8(8):659-61 - PubMed
  51. Nat Commun. 2014 Oct 06;5:5059 - PubMed
  52. Nat Rev Mol Cell Biol. 2007 Aug;8(8):645-54 - PubMed
  53. Nature. 2002 Jan 10;415(6868):141-7 - PubMed
  54. Nat Methods. 2011 Oct 02;8(11):937-40 - PubMed
  55. Nature. 2006 Mar 30;440(7084):631-6 - PubMed
  56. Nat Protoc. 2007;2(8):1896-906 - PubMed
  57. Mol Syst Biol. 2019 Jan 14;15(1):e8438 - PubMed
  58. J Am Soc Mass Spectrom. 2016 Oct;27(10):1620-5 - PubMed
  59. Development. 2017 Aug 1;144(15):2719-2729 - PubMed
  60. Genome Biol Evol. 2016 Jun 27;8(6):1812-23 - PubMed
  61. Nature. 2015 Sep 17;525(7569):339-44 - PubMed
  62. J Proteome Res. 2019 Mar 1;18(3):1299-1306 - PubMed
  63. Nucleic Acids Res. 2019 Jan 8;47(D1):D529-D541 - PubMed
  64. Cell. 2010 Dec 23;143(7):1174-89 - PubMed
  65. Nat Genet. 2021 May;53(5):638-649 - PubMed
  66. Mol Cell. 2019 Jan 3;73(1):166-182.e7 - PubMed
  67. Elife. 2019 Mar 12;8: - PubMed
  68. Science. 2017 Nov 10;358(6364):813-818 - PubMed
  69. Cell. 2015 Dec 3;163(6):1484-99 - PubMed
  70. Nat Biotechnol. 2006 Oct;24(10):1285-92 - PubMed
  71. Cell. 2019 May 16;177(5):1308-1318.e10 - PubMed
  72. Nucleic Acids Res. 2015 Jan;43(Database issue):D204-12 - PubMed
  73. Nucleic Acids Res. 2019 Jan 8;47(D1):D482-D489 - PubMed
  74. Proteomics. 2013 Jan;13(1):22-4 - PubMed
  75. Nucleic Acids Res. 2016 Jul 27;44(13):6070-86 - PubMed
  76. Nucleic Acids Res. 2002 Apr 1;30(7):1575-84 - PubMed
  77. Nat Genet. 2017 Dec;49(12):1779-1784 - PubMed
  78. Nucleic Acids Res. 2018 Jan 4;46(D1):D649-D655 - PubMed
  79. Cell Syst. 2020 Dec 16;11(6):589-607.e8 - PubMed
  80. Cell. 2017 Jul 27;170(3):564-576.e16 - PubMed
  81. Cell. 2020 Jan 23;180(2):387-402.e16 - PubMed
  82. Nucleic Acids Res. 2017 Jan 4;45(D1):D362-D368 - PubMed
  83. Mol Syst Biol. 2017 Jun 8;13(6):932 - PubMed
  84. Nature. 2005 Oct 20;437(7062):1173-8 - PubMed
  85. Genome Biol. 2016 Mar 14;17:47 - PubMed
  86. Nat Protoc. 2007;2(3):670-6 - PubMed
  87. Cell. 2016 Mar 24;165(1):153-164 - PubMed
  88. Nature. 2017 May 25;545(7655):505-509 - PubMed

Substances

MeSH terms

Publication Types

Grant support