Display options
Share it on

J Exp Med. 2022 Jan 03;219(1). doi: 10.1084/jem.20202084. Epub 2021 Nov 22.

A high OXPHOS CD8 T cell subset is predictive of immunotherapy resistance in melanoma patients.

The Journal of experimental medicine

Chuan Li, Yee Peng Phoon, Keaton Karlinsey, Ye F Tian, Samjhana Thapaliya, Angkana Thongkum, Lili Qu, Alyssa Joyce Matz, Mark Cameron, Cheryl Cameron, Antoine Menoret, Pauline Funchain, Jung-Min Song, C Marcela Diaz-Montero, Banumathi Tamilselvan, Jackelyn B Golden, Michael Cartwright, Annabelle Rodriguez, Christopher Bonin, Anthony Vella, Beiyan Zhou, Brian R Gastman

Affiliations

  1. Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT.
  2. Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH.
  3. Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH.
  4. Department of Nutrition, Case Western Reserve University, Cleveland, OH.
  5. Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH.
  6. Center for Vascular Biology, University of Connecticut, Farmington, CT.
  7. School of Medicine, University of Connecticut, Farmington, CT.
  8. Institute for Systems Genomics, University of Connecticut, Farmington, CT.
  9. Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH.

PMID: 34807232 PMCID: PMC8611729 DOI: 10.1084/jem.20202084

Abstract

Immune checkpoint inhibitor (ICI) therapy continues to revolutionize melanoma treatment, but only a subset of patients respond. Major efforts are underway to develop minimally invasive predictive assays of ICI response. Using single-cell transcriptomics, we discovered a unique CD8 T cell blood/tumor-shared subpopulation in melanoma patients with high levels of oxidative phosphorylation (OXPHOS), the ectonucleotidases CD38 and CD39, and both exhaustion and cytotoxicity markers. We called this population with high levels of OXPHOS "CD8+ TOXPHOS cells." We validated that higher levels of OXPHOS in tumor- and peripheral blood-derived CD8+ TOXPHOS cells correlated with ICI resistance in melanoma patients. We then developed an ICI therapy response predictive model using a transcriptomic profile of CD8+ TOXPHOS cells. This model is capable of discerning responders from nonresponders using either tumor or peripheral blood CD8 T cells with high accuracy in multiple validation cohorts. In sum, CD8+ TOXPHOS cells represent a critical immune population to assess ICI response with the potential to be a new target to improve outcomes in melanoma patients.

© 2021 Li et al.

Conflict of interest statement

Disclosures: P. Funchain reported grants from Pfizer and Bristol Myers Squibb and personal fees from Eisai outside the submitted work. A. Rodriguez reported non-financial support from Lipid Genomics d

References

  1. Cell. 2018 Nov 1;175(4):998-1013.e20 - PubMed
  2. Cancer Res. 2012 May 1;72(9):2218-27 - PubMed
  3. Expert Opin Biol Ther. 2016 Nov;16(11):1373-1385 - PubMed
  4. J Immunother Cancer. 2017 Aug 15;5(1):65 - PubMed
  5. Ann Oncol. 2019 Sep 1;30(9):1448-1459 - PubMed
  6. Nat Immunol. 2020 Sep;21(9):1022-1033 - PubMed
  7. Cancer Immunol Immunother. 2018 Aug;67(8):1181-1195 - PubMed
  8. Cell Metab. 2017 Jul 5;26(1):94-109 - PubMed
  9. Cell. 2017 Feb 9;168(4):707-723 - PubMed
  10. Nature. 2018 Feb 22;554(7693):544-548 - PubMed
  11. Front Immunol. 2017 Nov 13;8:1459 - PubMed
  12. Nat Med. 2016 Apr;22(4):433-8 - PubMed
  13. Eur J Cancer. 2009 Jan;45(2):228-47 - PubMed
  14. Eur J Cancer. 2017 Apr;75:47-55 - PubMed
  15. Nat Immunol. 2011 Jun;12(6):492-9 - PubMed
  16. J Immunother Cancer. 2018 May 14;6(1):35 - PubMed
  17. Cancer Cell. 2018 Apr 9;33(4):547-562 - PubMed
  18. Nat Rev Cancer. 2016 May;16(5):275-87 - PubMed
  19. J Biol Chem. 2005 Sep 30;280(39):33411-8 - PubMed
  20. Nat Med. 2019 Aug;25(8):1251-1259 - PubMed
  21. J Clin Invest. 2015 Sep;125(9):3365-76 - PubMed
  22. JAMA Oncol. 2019 Nov 1;5(11):1614-1618 - PubMed
  23. Cancer Res. 2008 Feb 1;68(3):870-9 - PubMed
  24. Biophys J. 1999 Jan;76(1 Pt 1):469-77 - PubMed
  25. Ann N Y Acad Sci. 2015 Jun;1346(1):63-70 - PubMed
  26. JCI Insight. 2020 Jan 30;5(2): - PubMed
  27. Oncoimmunology. 2018 Oct 11;8(1):e1507669 - PubMed
  28. Front Oncol. 2021 Mar 18;11:645069 - PubMed
  29. Nat Med. 2019 Dec;25(12):1916-1927 - PubMed
  30. Int J Cancer. 2019 Nov 15;145(10):2840-2849 - PubMed
  31. Cell. 2017 Sep 7;170(6):1120-1133.e17 - PubMed
  32. Sci Rep. 2015 Sep 02;5:13664 - PubMed
  33. Cell. 2019 Feb 7;176(4):775-789.e18 - PubMed
  34. PLoS One. 2014 Jul 14;9(7):e102327 - PubMed
  35. J Immunother Cancer. 2019 Oct 26;7(1):278 - PubMed
  36. Cancer Cell. 2019 Feb 11;35(2):238-255.e6 - PubMed
  37. Nat Methods. 2017 Mar;14(3):309-315 - PubMed
  38. Curr Opin Immunol. 2017 Jun;46:14-22 - PubMed
  39. J Immunother Cancer. 2018 Jun 18;6(1):57 - PubMed
  40. Cell. 2016 Mar 24;165(1):35-44 - PubMed
  41. Cell Rep. 2016 Aug 2;16(5):1243-1252 - PubMed
  42. J Exp Med. 2018 Dec 3;215(12):3165-3179 - PubMed
  43. Cancer Discov. 2018 Sep;8(9):1069-1086 - PubMed
  44. Cell Rep. 2020 Jul 7;32(1):107848 - PubMed
  45. J Clin Invest. 2014 May;124(5):2246-59 - PubMed
  46. Immunity. 2001 Nov;15(5):739-50 - PubMed
  47. Cell Rep. 2019 May 21;27(8):2411-2425.e9 - PubMed
  48. Immunol Rev. 2019 Nov;292(1):209-224 - PubMed
  49. J Immunother Cancer. 2019 Nov 27;7(1):325 - PubMed
  50. Genome Res. 2009 Sep;19(9):1639-45 - PubMed
  51. Nat Immunol. 2021 Feb;22(2):205-215 - PubMed
  52. N Engl J Med. 2015 May 21;372(21):2018-28 - PubMed
  53. Nat Cell Biol. 2020 Mar;22(3):310-320 - PubMed
  54. Cell Metab. 2020 Dec 1;32(6):908-919 - PubMed
  55. N Engl J Med. 2015 Sep 24;373(13):1207-19 - PubMed
  56. Nat Med. 1999 Jun;5(6):677-85 - PubMed
  57. N Engl J Med. 2019 Oct 17;381(16):1535-1546 - PubMed
  58. Blood. 2011 Sep 22;118(12):3399-409 - PubMed
  59. Cancer Cell. 2013 Nov 11;24(5):589-602 - PubMed
  60. Sci Rep. 2018 Jun 13;8(1):9033 - PubMed
  61. Nat Immunol. 2019 Sep;20(9):1092-1094 - PubMed
  62. Blood. 2012 Jun 7;119(23):5351-8 - PubMed
  63. Crit Rev Immunol. 2002;22(4):317-49 - PubMed
  64. Clin Cancer Res. 2011 Aug 1;17(15):4975-86 - PubMed
  65. Nat Med. 2019 Mar;25(3):454-461 - PubMed
  66. Front Immunol. 2018 Sep 11;9:2061 - PubMed
  67. Nature. 2019 Dec;576(7787):465-470 - PubMed
  68. Nat Rev Immunol. 2015 Aug;15(8):486-99 - PubMed
  69. Nat Rev Cancer. 2020 Apr;20(4):218-232 - PubMed
  70. J Clin Invest. 2019 Nov 1;129(11):4992-5004 - PubMed
  71. Science. 2019 Nov 22;366(6468):1013-1021 - PubMed
  72. Curr Biol. 2003 Sep 2;13(17):1469-79 - PubMed
  73. Nature. 2017 May 4;545(7652):60-65 - PubMed
  74. Front Immunol. 2018 Aug 03;9:1613 - PubMed
  75. Annu Rev Immunol. 2008;26:233-59 - PubMed
  76. Ann Oncol. 2019 Jun 1;30(6):998-1004 - PubMed
  77. Nat Rev Immunol. 2021 Oct;21(10):637-652 - PubMed
  78. Am J Transplant. 2003 Aug;3(8):942-51 - PubMed
  79. Nature. 2017 Jan 18;541(7637):321-330 - PubMed
  80. J Clin Invest. 2010 Oct;120(10):3432-4 - PubMed
  81. Science. 2016 Apr 8;352(6282):189-96 - PubMed
  82. Nature. 2020 Mar;579(7798):274-278 - PubMed
  83. J Clin Oncol. 2019 Oct 1;37(28):2518-2527 - PubMed
  84. Science. 2018 Mar 23;359(6382):1350-1355 - PubMed
  85. Nat Biotechnol. 2021 Feb;39(2):186-197 - PubMed
  86. Nat Rev Cancer. 2019 Mar;19(3):133-150 - PubMed
  87. Nat Med. 2020 Feb;26(2):193-199 - PubMed
  88. Ann Oncol. 2020 Sep;31(9):1112-1114 - PubMed
  89. Nat Genet. 2019 Feb;51(2):202-206 - PubMed
  90. Cancer Immunol Res. 2019 Mar;7(3):510-525 - PubMed
  91. Immunol Rev. 2017 Mar;276(1):121-144 - PubMed
  92. J Immunother Cancer. 2016 Nov 15;4:76 - PubMed
  93. Nat Med. 2018 Oct;24(10):1545-1549 - PubMed

Publication Types

Grant support