Display options
Share it on

Sci Rep. 2021 Dec 16;11(1):24118. doi: 10.1038/s41598-021-03627-8.

Connexin hemichannel inhibition ameliorates epidermal pathology in a mouse model of keratitis ichthyosis deafness syndrome.

Scientific reports

Caterina Sellitto, Leping Li, Thomas W White

Affiliations

  1. Department of Physiology and Biophysics, Stony Brook University, T5-147, Basic Science Tower, Stony Brook, NY, 11794-8661, USA.
  2. Department of Physiology and Biophysics, Stony Brook University, T5-147, Basic Science Tower, Stony Brook, NY, 11794-8661, USA. [email protected].

PMID: 34916582 DOI: 10.1038/s41598-021-03627-8

Abstract

Mutations in five different genes encoding connexin channels cause eleven clinically defined human skin diseases. Keratitis ichthyosis deafness (KID) syndrome is caused by point mutations in the GJB2 gene encoding Connexin 26 (Cx26) which result in aberrant activation of connexin hemichannels. KID syndrome has no cure and is associated with bilateral hearing loss, blinding keratitis, palmoplantar keratoderma, ichthyosiform erythroderma and a high incidence of childhood mortality. Here, we have tested whether a topically applied hemichhanel inhibitor (flufenamic acid, FFA) could ameliorate the skin pathology associated with KID syndrome in a transgenic mouse model expressing the lethal Cx26-G45E mutation. We found that FFA blocked the hemichannel activity of Cx26-G45E in vitro, and substantially reduced epidermal pathology in vivo, compared to untreated, or vehicle treated control animals. FFA did not reduce the expression of mutant connexin hemichannel protein, and cessation of FFA treatment allowed disease progression to continue. These results suggested that aberrant hemichannel activity is a major driver of skin disease in KID syndrome, and that the inhibition of mutant hemichannel activity could provide an attractive target to develop novel therapeutic interventions to treat this incurable disease.

© 2021. The Author(s).

References

  1. Srinivas, M., Verselis, V. K. & White, T. W. Human diseases associated with connexin mutations. Biochim. Biophys. Acta 1860, 192–201. https://doi.org/10.1016/j.bbamem.2017.04.024 (2018). - PubMed
  2. Avshalumova, L., Fabrikant, J. & Koriakos, A. Overview of skin diseases linked to connexin gene mutations. Int. J. Dermatol. 53, 192–205. https://doi.org/10.1111/ijd.12062 (2014). - PubMed
  3. Lilly, E., Sellitto, C., Milstone, L. M. & White, T. W. Connexin channels in congenital skin disorders. Semin. Cell Dev. Biol. 50, 4–12. https://doi.org/10.1016/j.semcdb.2015.11.018 (2016). - PubMed
  4. Richard, G. et al. Missense mutations in GJB2 encoding connexin-26 cause the ectodermal dysplasia keratitis-ichthyosis-deafness syndrome. Am. J. Hum. Genet. 70, 1341–1348. https://doi.org/10.1086/339986 (2002). - PubMed
  5. van Steensel, M. A., van Geel, M., Nahuys, M., Smitt, J. H. & Steijlen, P. M. A novel connexin 26 mutation in a patient diagnosed with keratitis-ichthyosis-deafness syndrome. J. Invest. Dermatol. 118, 724–727. https://doi.org/10.1046/j.1523-1747.2002.01735.x (2002). - PubMed
  6. Stong, B. C., Chang, Q., Ahmad, S. & Lin, X. A novel mechanism for connexin 26 mutation linked deafness: Cell death caused by leaky gap junction hemichannels. Laryngoscope 116, 2205–2210. https://doi.org/10.1097/01.mlg.0000241944.77192.d2 (2006). - PubMed
  7. Montgomery, J. R., White, T. W., Martin, B. L., Turner, M. L. & Holland, S. M. A novel connexin 26 gene mutation associated with features of the keratitis-ichthyosis-deafness syndrome and the follicular occlusion triad. J. Am. Acad. Dermatol. 51, 377–382. https://doi.org/10.1016/j.jaad.2003.12.042 (2004). - PubMed
  8. Gerido, D. A., DeRosa, A. M., Richard, G. & White, T. W. Aberrant hemichannel properties of Cx26 mutations causing skin disease and deafness. Am. J. Physiol. Cell Physiol. 293, C337-345. https://doi.org/10.1152/ajpcell.00626.2006 (2007). - PubMed
  9. Lee, J. R., Derosa, A. M. & White, T. W. Connexin mutations causing skin disease and deafness increase hemichannel activity and cell death when expressed in Xenopus oocytes. J. Invest. Dermatol. 129, 870–878. https://doi.org/10.1038/jid.2008.335 (2009). - PubMed
  10. Mhaske, P. V. et al. The human Cx26-D50A and Cx26-A88V mutations causing keratitis-ichthyosis-deafness syndrome display increased hemichannel activity. Am. J. Physiol. Cell Physiol. 304, C1150-1158. https://doi.org/10.1152/ajpcell.00374.2012 (2013). - PubMed
  11. Garcia, I. E. et al. Keratitis-ichthyosis-deafness syndrome-associated cx26 mutants produce nonfunctional gap junctions but hyperactive hemichannels when co-expressed with wild type cx43. J. Invest. Dermatol. 135, 1338–1347. https://doi.org/10.1038/jid.2015.20 (2015). - PubMed
  12. Donnelly, S. et al. Differential susceptibility of Cx26 mutations associated with epidermal dysplasias to peptidoglycan derived from Staphylococcus aureus and Staphylococcus epidermidis. Exp. Dermatol. 21, 592–598. https://doi.org/10.1111/j.1600-0625.2012.01521.x (2012). - PubMed
  13. Mese, G. et al. The Cx26-G45E mutation displays increased hemichannel activity in a mouse model of the lethal form of keratitis-ichthyosis-deafness syndrome. Mol. Biol. Cell 22, 4776–4786. https://doi.org/10.1091/mbc.E11-09-0778 (2011). - PubMed
  14. Schutz, M. et al. The connexin26 S17F mouse mutant represents a model for the human hereditary keratitis-ichthyosis-deafness syndrome. Hum. Mol. Genet. 20, 28–39. https://doi.org/10.1093/hmg/ddq429 (2011). - PubMed
  15. Bruzzone, R., White, T. W. & Paul, D. L. Connections with connexins: The molecular basis of direct intercellular signaling. Eur. J. Biochem. 238, 1–27 (1996). - PubMed
  16. Vinken, M. Introduction: Connexins, pannexins and their channels as gatekeepers of organ physiology. Cell Mol. Life Sci. 72, 2775–2778. https://doi.org/10.1007/s00018-015-1958-3 (2015). - PubMed
  17. Laird, D. W. Life cycle of connexins in health and disease. Biochem. J. 394, 527–543. https://doi.org/10.1042/BJ20051922 (2006). - PubMed
  18. Musil, L. S. & Goodenough, D. A. Multisubunit assembly of an integral plasma membrane channel protein, gap junction connexin43, occurs after exit from the ER. Cell 74, 1065–1077 (1993). - PubMed
  19. Harris, A. L. Emerging issues of connexin channels: Biophysics fills the gap. Q. Rev. Biophys. 34, 325–472 (2001). - PubMed
  20. Evans, W. H., De Vuyst, E. & Leybaert, L. The gap junction cellular internet: Connexin hemichannels enter the signalling limelight. Biochem. J. 397, 1–14. https://doi.org/10.1042/BJ20060175 (2006). - PubMed
  21. Retamal, M. A. et al. Diseases associated with leaky hemichannels. Front. Cell Neurosci. 9, 267. https://doi.org/10.3389/fncel.2015.00267 (2015). - PubMed
  22. Lilly, E. et al. More than keratitis, ichthyosis, and deafness: Multisystem effects of lethal GJB2 mutations. J. Am. Acad. Dermatol. 80, 617–625. https://doi.org/10.1016/j.jaad.2018.09.042 (2019). - PubMed
  23. Sanchez, H. A. & Verselis, V. K. Aberrant Cx26 hemichannels and keratitis-ichthyosis-deafness syndrome: Insights into syndromic hearing loss. Front. Cell Neurosci. 8, 354. https://doi.org/10.3389/fncel.2014.00354 (2014). - PubMed
  24. Grob, J. J., Breton, A., Bonafe, J. L., Sauvan-Ferdani, M. & Bonerandi, J. J. Keratitis, ichthyosis, and deafness (KID) syndrome. Vertical transmission and death from multiple squamous cell carcinomas. Arch. Dermatol. 123, 777–782 (1987). - PubMed
  25. Mazereeuw-Hautier, J. et al. Keratitis-ichthyosis-deafness syndrome: Disease expression and spectrum of connexin 26 (GJB2) mutations in 14 patients. Br. J. Dermatol. 156, 1015–1019. https://doi.org/10.1111/j.1365-2133.2007.07806.x (2007). - PubMed
  26. Levit, N. A. et al. Aberrant connexin26 hemichannels underlying keratitis-ichthyosis-deafness syndrome are potently inhibited by mefloquine. J. Invest. Dermatol. 135, 1033–1042. https://doi.org/10.1038/jid.2014.408 (2015). - PubMed
  27. Eskandari, S., Zampighi, G. A., Leung, D. W., Wright, E. M. & Loo, D. D. Inhibition of gap junction hemichannels by chloride channel blockers. J. Membr. Biol. 185, 93–102. https://doi.org/10.1007/s00232-001-0115-0 (2002). - PubMed
  28. Srinivas, M. & Spray, D. C. Closure of gap junction channels by arylaminobenzoates. Mol. Pharmacol. 63, 1389–1397. https://doi.org/10.1124/mol.63.6.1389 (2003). - PubMed
  29. Kagan, G., Huddlestone, L. & Wolstencroft, P. Flufenamic acid and placebo compared in rheumatoid arthritis and osteoarthritis. J Int Med Res 9, 253–256 (1981). - PubMed
  30. Kapadia, L. & Elder, M. G. Flufenamic acid in treatment of primary spasmodic dysmenorrhoea. A double-blind crossover study. Lancet 1, 348–350 (1978). - PubMed
  31. Sydnes, O. A. A controlled clinical trial of flufenamic acid in rheumatoid arthritis. Ann. Phys. Med. 8, 93–98 (1966). - PubMed
  32. Benavides, F., Oberyszyn, T. M., VanBuskirk, A. M., Reeve, V. E. & Kusewitt, D. F. The hairless mouse in skin research. J. Dermatol. Sci. 53, 10–18. https://doi.org/10.1016/j.jdermsci.2008.08.012 (2009). - PubMed
  33. Abdollahi, A. et al. KID syndrome. Dermatol. Online J. 13, 11 (2007). - PubMed
  34. Skinner, B. A., Greist, M. C. & Norins, A. L. The keratitis, ichthyosis, and deafness (KID) syndrome. Arch. Dermatol. 117, 285–289 (1981). - PubMed
  35. Coggshall, K. et al. Keratitis, ichthyosis, and deafness syndrome: A review of infectious and neoplastic complications. J. Am. Acad. Dermatol. 69, 127–134. https://doi.org/10.1016/j.jaad.2012.12.965 (2013). - PubMed
  36. Gilliam, A. & Williams, M. L. Fatal septicemia in an infant with keratitis, ichthyosis, and deafness (KID) syndrome. Pediatr. Dermatol. 19, 232–236 (2002). - PubMed
  37. Patel, V., Sun, G., Dickman, M., Khuu, P. & Teng, J. M. Treatment of keratitis-ichthyosis- deafness (KID) syndrome in children: A case report and review of the literature. Dermatol. Ther. 28, 89–93. https://doi.org/10.1111/dth.12192 (2015). - PubMed
  38. Cammarata-Scalisi, F. et al. Clinical, etiopathogenic, and therapeutic aspects of KID syndrome. Dermatol. Ther. 33, e13507. https://doi.org/10.1111/dth.13507 (2020). - PubMed
  39. Levit, N. A. & White, T. W. Connexin hemichannels influence genetically determined inflammatory and hyperproliferative skin diseases. Pharmacol. Res. 99, 337–343. https://doi.org/10.1016/j.phrs.2015.07.015 (2015). - PubMed
  40. Buratto, D., Donati, V., Zonta, F. & Mammano, F. Harnessing the therapeutic potential of antibodies targeting connexin hemichannels. Biochim. Biophys. Acta 1867, 166047. https://doi.org/10.1016/j.bbadis.2020.166047 (2021). - PubMed
  41. Kuang, Y. et al. A potent antagonist antibody targeting connexin hemichannels alleviates Clouston syndrome symptoms in mutant mice. EBioMedicine 57, 102825 (2020). - PubMed
  42. Xu, L. et al. Design and characterization of a human monoclonal antibody that modulates mutant Connexin 26 hemichannels implicated in deafness and skin disorders. Front. Mol. Neurosci. 10, 298. https://doi.org/10.3389/fnmol.2017.00298 (2017). - PubMed
  43. Bosen, F. et al. The Clouston syndrome mutation connexin30 A88V leads to hyperproliferation of sebaceous glands and hearing impairments in mice. FEBS Lett. 588, 1795–1801. https://doi.org/10.1016/j.febslet.2014.03.040 (2014). - PubMed
  44. Essenfelder, G. M. et al. Connexin30 mutations responsible for hidrotic ectodermal dysplasia cause abnormal hemichannel activity. Hum. Mol. Genet. 13, 1703–1714. https://doi.org/10.1093/hmg/ddh191 (2004). - PubMed
  45. Shuja, Z., Li, L., Gupta, S., Mese, G. & White, T. W. Connexin26 mutations causing palmoplantar keratoderma and deafness interact with Connexin43, modifying gap junction and hemichannel properties. J. Invest. Dermatol. 136, 225–235. https://doi.org/10.1038/JID.2015.389 (2016). - PubMed
  46. Srinivas, M. et al. Connexin43 mutations linked to skin disease have augmented hemichannel activity. Sci. Rep. 9, 19. https://doi.org/10.1038/s41598-018-37221-2 (2019). - PubMed
  47. Wang, H. et al. Exome sequencing reveals mutation in GJA1 as a cause of keratoderma-hypotrichosis-leukonychia totalis syndrome. Hum. Mol. Genet. 24, 243–250. https://doi.org/10.1093/hmg/ddu442 (2015). - PubMed
  48. Martin, P. E., Easton, J. A., Hodgins, M. B. & Wright, C. S. Connexins: Sensors of epidermal integrity that are therapeutic targets. FEBS Lett. 588, 1304–1314. https://doi.org/10.1016/j.febslet.2014.02.048 (2014). - PubMed
  49. Garcia, I. E. et al. From hyperactive Connexin26 hemichannels to impairments in epidermal calcium gradient and permeability barrier in the keratitis-ichthyosis-deafness syndrome. J. Invest. Dermatol. 136, 574–583. https://doi.org/10.1016/j.jid.2015.11.017 (2016). - PubMed
  50. Elsholz, F., Harteneck, C., Muller, W. & Friedland, K. Calcium: A central regulator of keratinocyte differentiation in health and disease. Eur. J. Dermatol. 24, 650–661. https://doi.org/10.1684/ejd.2014.2452 (2014). - PubMed
  51. Sanchez, H. A., Mese, G., Srinivas, M., White, T. W. & Verselis, V. K. Differentially altered Ca2+ regulation and Ca2+ permeability in Cx26 hemichannels formed by the A40V and G45E mutations that cause keratitis ichthyosis deafness syndrome. J. Gen. Physiol. 136, 47–62. https://doi.org/10.1085/jgp.201010433 (2010). - PubMed
  52. Delmar, M. et al. Connexins and disease. Cold Spring Harb. Perspect. Biol. 10, a029348. https://doi.org/10.1101/cshperspect.a029348 (2018). - PubMed
  53. Sanchez, H. A., Villone, K., Srinivas, M. & Verselis, V. K. The D50N mutation and syndromic deafness: Altered Cx26 hemichannel properties caused by effects on the pore and intersubunit interactions. J. Gen. Physiol. 142, 3–22. https://doi.org/10.1085/jgp.201310962 (2013). - PubMed
  54. Bosen, F. et al. Altered epidermal lipid processing and calcium distribution in the KID syndrome mouse model Cx26S17F. FEBS Lett. https://doi.org/10.1016/j.febslet.2015.05.047 (2015). - PubMed
  55. Labarthe, M. P., Bosco, D., Saurat, J. H., Meda, P. & Salomon, D. Upregulation of connexin 26 between keratinocytes of psoriatic lesions. J. Invest. Dermatol. 111, 72–76. https://doi.org/10.1046/j.1523-1747.1998.00248.x (1998). - PubMed
  56. Rouan, F. et al. trans-dominant inhibition of connexin-43 by mutant connexin-26: Implications for dominant connexin disorders affecting epidermal differentiation. J. Cell Sci. 114, 2105–2113 (2001). - PubMed
  57. Aypek, H., Bay, V. & Mese, G. Altered cellular localization and hemichannel activities of KID syndrome associated connexin26 I30N and D50Y mutations. BMC Cell Biol. 17, 5. https://doi.org/10.1186/s12860-016-0081-0 (2016). - PubMed
  58. Bakirtzis, G. et al. Targeted epidermal expression of mutant Connexin 26(D66H) mimics true Vohwinkel syndrome and provides a model for the pathogenesis of dominant connexin disorders. Hum. Mol. Genet. 12, 1737–1744 (2003). - PubMed
  59. Ziraldo, G. et al. A human-derived monoclonal antibody targeting extracellular connexin domain selectively modulates hemichannel function. Front. Physiol. 10, 392. https://doi.org/10.3389/fphys.2019.00392 (2019). - PubMed
  60. Willebrords, J., Maes, M., Crespo Yanguas, S. & Vinken, M. Inhibitors of connexin and pannexin channels as potential therapeutics. Pharmacol. Ther. 180, 144–160. https://doi.org/10.1016/j.pharmthera.2017.07.001 (2017). - PubMed
  61. Laird, D. W. & Lampe, P. D. Therapeutic strategies targeting connexins. Nat. Rev. Drug Discov. 17, 905–921. https://doi.org/10.1038/nrd.2018.138 (2018). - PubMed
  62. Lee, M. Y. et al. Allele-specific small interfering RNA corrects aberrant cellular phenotype in keratitis-ichthyosis-deafness syndrome keratinocytes. J. Invest. Dermatol. 140, 1035–1044. https://doi.org/10.1016/j.jid.2019.09.022 (2020). - PubMed
  63. Bruzzone, R., Haefliger, J. A., Gimlich, R. L. & Paul, D. L. Connexin40, a component of gap junctions in vascular endothelium, is restricted in its ability to interact with other connexins. Mol. Biol. Cell 4, 7–20 (1993). - PubMed

Publication Types

Grant support