Display options
Share it on

Sci Rep. 2021 Dec 16;11(1):24118. doi: 10.1038/s41598-021-03627-8.

Connexin hemichannel inhibition ameliorates epidermal pathology in a mouse model of keratitis ichthyosis deafness syndrome.

Scientific reports

Caterina Sellitto, Leping Li, Thomas W White

Affiliations

  1. Department of Physiology and Biophysics, Stony Brook University, T5-147, Basic Science Tower, Stony Brook, NY, 11794-8661, USA.
  2. Department of Physiology and Biophysics, Stony Brook University, T5-147, Basic Science Tower, Stony Brook, NY, 11794-8661, USA. [email protected].

PMID: 34916582 PMCID: PMC8677806 DOI: 10.1038/s41598-021-03627-8

Abstract

Mutations in five different genes encoding connexin channels cause eleven clinically defined human skin diseases. Keratitis ichthyosis deafness (KID) syndrome is caused by point mutations in the GJB2 gene encoding Connexin 26 (Cx26) which result in aberrant activation of connexin hemichannels. KID syndrome has no cure and is associated with bilateral hearing loss, blinding keratitis, palmoplantar keratoderma, ichthyosiform erythroderma and a high incidence of childhood mortality. Here, we have tested whether a topically applied hemichhanel inhibitor (flufenamic acid, FFA) could ameliorate the skin pathology associated with KID syndrome in a transgenic mouse model expressing the lethal Cx26-G45E mutation. We found that FFA blocked the hemichannel activity of Cx26-G45E in vitro, and substantially reduced epidermal pathology in vivo, compared to untreated, or vehicle treated control animals. FFA did not reduce the expression of mutant connexin hemichannel protein, and cessation of FFA treatment allowed disease progression to continue. These results suggested that aberrant hemichannel activity is a major driver of skin disease in KID syndrome, and that the inhibition of mutant hemichannel activity could provide an attractive target to develop novel therapeutic interventions to treat this incurable disease.

© 2021. The Author(s).

References

  1. J Invest Dermatol. 2016 Mar;136(3):574-583 - PubMed
  2. Mol Pharmacol. 2003 Jun;63(6):1389-97 - PubMed
  3. Int J Dermatol. 2014 Feb;53(2):192-205 - PubMed
  4. Dermatol Online J. 2007 Oct 13;13(4):11 - PubMed
  5. J Int Med Res. 1981;9(4):253-6 - PubMed
  6. Hum Mol Genet. 2003 Jul 15;12(14):1737-44 - PubMed
  7. Mol Biol Cell. 1993 Jan;4(1):7-20 - PubMed
  8. Cell. 1993 Sep 24;74(6):1065-77 - PubMed
  9. Hum Mol Genet. 2015 Jan 1;24(1):243-50 - PubMed
  10. Arch Dermatol. 1981 May;117(5):285-9 - PubMed
  11. BMC Cell Biol. 2016 Feb 02;17:5 - PubMed
  12. EBioMedicine. 2020 Jul;57:102825 - PubMed
  13. Br J Dermatol. 2007 May;156(5):1015-9 - PubMed
  14. J Cell Sci. 2001 Jun;114(Pt 11):2105-13 - PubMed
  15. Lancet. 1978 Feb 18;1(8060):348-50 - PubMed
  16. J Invest Dermatol. 2016 Jan;136(1):225-235 - PubMed
  17. Biochim Biophys Acta Mol Basis Dis. 2021 Apr 1;1867(4):166047 - PubMed
  18. J Invest Dermatol. 1998 Jul;111(1):72-6 - PubMed
  19. J Invest Dermatol. 2015 May;135(5):1338-1347 - PubMed
  20. J Invest Dermatol. 2009 Apr;129(4):870-8 - PubMed
  21. Mol Biol Cell. 2011 Dec;22(24):4776-86 - PubMed
  22. Front Cell Neurosci. 2014 Oct 27;8:354 - PubMed
  23. Arch Dermatol. 1987 Jun;123(6):777-82 - PubMed
  24. J Membr Biol. 2002 Jan 15;185(2):93-102 - PubMed
  25. Eur J Dermatol. 2014 Nov-Dec;24(6):650-61 - PubMed
  26. Exp Dermatol. 2012 Aug;21(8):592-8 - PubMed
  27. J Am Acad Dermatol. 2004 Sep;51(3):377-82 - PubMed
  28. J Invest Dermatol. 2020 May;140(5):1035-1044.e7 - PubMed
  29. Laryngoscope. 2006 Dec;116(12):2205-10 - PubMed
  30. Biochim Biophys Acta Biomembr. 2018 Jan;1860(1):192-201 - PubMed
  31. Semin Cell Dev Biol. 2016 Feb;50:4-12 - PubMed
  32. J Am Acad Dermatol. 2013 Jul;69(1):127-34 - PubMed
  33. FEBS Lett. 2014 May 2;588(9):1795-801 - PubMed
  34. Eur J Biochem. 1996 May 15;238(1):1-27 - PubMed
  35. Hum Mol Genet. 2011 Jan 1;20(1):28-39 - PubMed
  36. Ann Phys Med. 1966;Suppl:93-8 - PubMed
  37. J Gen Physiol. 2010 Jul;136(1):47-62 - PubMed
  38. J Invest Dermatol. 2015 Apr;135(4):1033-1042 - PubMed
  39. Biochem J. 2006 Mar 15;394(Pt 3):527-43 - PubMed
  40. Q Rev Biophys. 2001 Aug;34(3):325-472 - PubMed
  41. Sci Rep. 2019 Jan 10;9(1):19 - PubMed
  42. Biochem J. 2006 Jul 1;397(1):1-14 - PubMed
  43. Pharmacol Res. 2015 Sep;99:337-43 - PubMed
  44. Dermatol Ther. 2015 Mar-Apr;28(2):89-93 - PubMed
  45. Am J Physiol Cell Physiol. 2013 Jun 15;304(12):C1150-8 - PubMed
  46. FEBS Lett. 2014 Apr 17;588(8):1304-14 - PubMed
  47. Am J Hum Genet. 2002 May;70(5):1341-8 - PubMed
  48. Cold Spring Harb Perspect Biol. 2018 Sep 4;10(9): - PubMed
  49. J Dermatol Sci. 2009 Jan;53(1):10-8 - PubMed
  50. Hum Mol Genet. 2004 Aug 15;13(16):1703-14 - PubMed
  51. Front Physiol. 2019 Jun 11;10:392 - PubMed
  52. Front Cell Neurosci. 2015 Jul 27;9:267 - PubMed
  53. J Gen Physiol. 2013 Jul;142(1):3-22 - PubMed
  54. J Invest Dermatol. 2002 Apr;118(4):724-7 - PubMed
  55. Pharmacol Ther. 2017 Dec;180:144-160 - PubMed
  56. Am J Physiol Cell Physiol. 2007 Jul;293(1):C337-45 - PubMed
  57. FEBS Lett. 2015 Jul 8;589(15):1904-10 - PubMed
  58. J Am Acad Dermatol. 2019 Mar;80(3):617-625 - PubMed
  59. Cell Mol Life Sci. 2015 Aug;72(15):2775-8 - PubMed
  60. Nat Rev Drug Discov. 2018 Dec;17(12):905-921 - PubMed
  61. Front Mol Neurosci. 2017 Sep 22;10:298 - PubMed
  62. Dermatol Ther. 2020 Jul;33(4):e13507 - PubMed
  63. Pediatr Dermatol. 2002 May-Jun;19(3):232-6 - PubMed

Publication Types

Grant support