Display options
Share it on

Nat Microbiol. 2021 Dec 23; doi: 10.1038/s41564-021-01010-x. Epub 2021 Dec 23.

The microbial gbu gene cluster links cardiovascular disease risk associated with red meat consumption to microbiota L-carnitine catabolism.

Nature microbiology

Jennifer A Buffa, Kymberleigh A Romano, Matthew F Copeland, David B Cody, Weifei Zhu, Rachel Galvez, Xiaoming Fu, Kathryn Ward, Marc Ferrell, Hong J Dai, Sarah Skye, Ping Hu, Lin Li, Mirjana Parlov, Amy McMillan, Xingtao Wei, Ina Nemet, Robert A Koeth, Xinmin S Li, Zeneng Wang, Naseer Sangwan, Adeline M Hajjar, Mohammed Dwidar, Taylor L Weeks, Nathalie Bergeron, Ronald M Krauss, W H Wilson Tang, Federico E Rey, Joseph A DiDonato, Valentin Gogonea, G Frank Gerberick, Jose Carlos Garcia-Garcia, Stanley L Hazen

Affiliations

  1. Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
  2. Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH, USA.
  3. Life Sciences TPT and Global Biosciences, The Procter & Gamble Company, Cincinnati, OH, USA.
  4. Abbott Structural Heart, Santa Clara, CA, USA.
  5. Dose Biosystems Inc., Toronto, Ontario, Canada.
  6. Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA.
  7. Department of Biological and Pharmaceutical Sciences, College of Pharmacy, Touro University California, Vallejo, CA, USA.
  8. Departments of Pediatrics and Medicine, University of California, San Francisco, CA, USA.
  9. Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
  10. Department of Chemistry, Cleveland State University, Cleveland, OH, USA.
  11. Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA. [email protected].
  12. Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH, USA. [email protected].
  13. Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA. [email protected].

PMID: 34949826 DOI: 10.1038/s41564-021-01010-x

Abstract

The heightened cardiovascular disease (CVD) risk observed among omnivores is thought to be linked, in part, to gut microbiota-dependent generation of trimethylamine-N-oxide (TMAO) from L-carnitine, a nutrient abundant in red meat. Gut microbial transformation of L-carnitine into trimethylamine (TMA), the precursor of TMAO, occurs via the intermediate γ-butyrobetaine (γBB). However, the interrelationship of γBB, red meat ingestion and CVD risks, as well as the gut microbial genes responsible for the transformation of γBB to TMA, are unclear. In the present study, we show that plasma γBB levels in individuals from a clinical cohort (n = 2,918) are strongly associated with incident CVD event risks. Culture of human faecal samples and microbial transplantation studies in gnotobiotic mice with defined synthetic communities showed that the introduction of Emergencia timonensis, a human gut microbe that can metabolize γBB into TMA, is sufficient to complete the carnitine → γBB → TMA transformation, elevate TMAO levels and enhance thrombosis potential in recipients after arterial injury. RNA-sequencing analyses of E. timonensis identified a six-gene cluster, herein named the γBB utilization (gbu) gene cluster, which is upregulated in response to γBB. Combinatorial cloning and functional studies identified four genes (gbuA, gbuB, gbuC and gbuE) that are necessary and sufficient to recapitulate the conversion of γBB to TMA when coexpressed in Escherichia coli. Finally, reanalysis of samples (n = 113) from a clinical, randomized diet, intervention study showed that the abundance of faecal gbuA correlates with plasma TMAO and a red meat-rich diet. Our findings reveal a microbial gene cluster that is critical to dietary carnitine → γBB → TMA → TMAO transformation in hosts and contributes to CVD risk.

© 2021. The Author(s), under exclusive licence to Springer Nature Limited.

References

  1. Kwok, C. S. et al. Dietary components and risk of cardiovascular disease and all-cause mortality: a review of evidence from meta-analyses. Eur. J. Prev. Cardiol. 26, 1415–1429 (2019). - PubMed
  2. Bechthold, A. et al. Food groups and risk of coronary heart disease, stroke and heart failure: a systematic review and dose-response meta-analysis of prospective studies. Crit. Rev. Food Sci. Nutr. 59, 1071–1090 (2019). - PubMed
  3. Pan, A. et al. Red meat consumption and mortality: results from 2 prospective cohort studies. Arch. Intern. Med. 172, 555 (2012). - PubMed
  4. Wang, X. et al. Red and processed meat consumption and mortality: dose–response meta-analysis of prospective cohort studies. Public Health Nutr. 19, 893–905 (2016). - PubMed
  5. Abete, I., Romaguera, D., Vieira, A. R., Lopez de Munain, A. & Norat, T. Association between total, processed, red and white meat consumption and all-cause, CVD and IHD mortality: a meta-analysis of cohort studies. Br. J. Nutr. 112, 762–775 (2014). - PubMed
  6. Koeth, R. A. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585 (2013). - PubMed
  7. Bennett, B. J. et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab. 17, 49–60 (2013). - PubMed
  8. Koeth, R. A. et al. l-Carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans. J. Clin. Invest. 129, 373–387 (2018). - PubMed
  9. Koeth, R. A. et al. γ-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO. Cell Metab. 20, 799–812 (2014). - PubMed
  10. Zhu, Y. et al. Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota. Proc. Natl Acad. Sci. USA 111, 4268–4273 (2014). - PubMed
  11. Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011). - PubMed
  12. Craciun, S. & Balskus, E. P. Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. Proc. Natl Acad. Sci. USA 109, 21307–21312 (2012). - PubMed
  13. Thibodeaux, C. J. & van der Donk, W. A. Converging on a mechanism for choline degradation. Proc. Natl Acad. Sci. USA 109, 21184–21185 (2012). - PubMed
  14. Romano, K. A., Vivas, E. I., Amador-Noguez, D. & Rey, F. E. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. mBio 6, e02481–14 (2015). - PubMed
  15. Martínez-del Campo, A. et al. Characterization and detection of a widely distributed gene cluster that predicts anaerobic choline utilization by human gut bacteria. mBio 6, e00042–15 (2015). - PubMed
  16. Eichler, K., Bourgis, F., Buchet, A., Kleber, H.-P. & Mandrand-Berthelot, M.-A. Molecular characterization of the cai operon necessary for carnitine metabolism in Escherichia coli. Mol. Microbiol. 13, 775–786 (1994). - PubMed
  17. Eichler, K., Buchet, A., Lemke, R., Kleber, H. P. & Mandrand-Berthelot, M. A. Identification and characterization of the caiF gene encoding a potential transcriptional activator of carnitine metabolism in Escherichia coli. J. Bacteriol. 178, 1248–1257 (1996). - PubMed
  18. Roberts, A. B. et al. Development of a gut microbe–targeted nonlethal therapeutic to inhibit thrombosis potential. Nat. Med. 24, 1407–1417 (2018). - PubMed
  19. Skye, S. M. et al. Microbial transplantation with human gut commensals containing cutc is sufficient to transmit enhanced platelet reactivity and thrombosis potential. Circ. Res. 123, 1164–1176 (2018). - PubMed
  20. Micha, R., Michas, G., Lajous, M. & Mozaffarian, D. Processing of meats and cardiovascular risk: time to focus on preservatives. BMC Med. 11, 136 (2013). - PubMed
  21. Wang, Z. et al. Impact of chronic dietary red meat, white meat, or non-meat protein on trimethylamine N-oxide metabolism and renal excretion in healthy men and women. Eur. Heart J. 40, 583–594 (2019). - PubMed
  22. Pagliai, G. et al. Influence of a 3-month low-calorie Mediterranean diet compared to the vegetarian diet on human gut microbiota and SCFA: the CARDIVEG study. Eur. J. Nutr. 59, 2011–2024 (2020). - PubMed
  23. Sakkas, H. et al. Nutritional status and the influence of the vegan diet on the gut microbiota and human health. Medicine 56, 88 (2020). - PubMed
  24. Djekic, D. et al. Effects of a vegetarian diet on cardiometabolic risk factors, gut microbiota, and plasma metabolome in subjects with ischemic heart disease: a randomized, crossover study. J. Am. Heart Assoc. 9, e016518 (2020). - PubMed
  25. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014). - PubMed
  26. Zhu, W. et al. Gut mcrobial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 165, 111–124 (2016). - PubMed
  27. Rajakovich, L. J., Fu, B., Bollenbach, M. & Balskus, E. P. Elucidation of an anaerobic pathway for metabolism of L-carnitine-derived γ-butyrobetaine to trimethylamine in human gut bacteria. Proc. Natl Acad. Sci. USA 118, e2101498118 (2021). - PubMed
  28. Guasti, L. et al. TMAO as a biomarker of cardiovascular events: a systematic review and meta-analysis. Intern. Emerg. Med. 16, 201–207 (2021). - PubMed
  29. Zhuang, R. et al. Gut microbe-generated metabolite trimethylamine N‐oxide and the risk of diabetes: a systematic review and dose‐response meta‐analysis. Obes. Rev. 20, 883–894 (2019). - PubMed
  30. Xu, R., Wang, Q. & Li, L. A genome-wide systems analysis reveals strong link between colorectal cancer and trimethylamine N-oxide (TMAO), a gut microbial metabolite of dietary meat and fat. BMC Genom. 16, S4 (2015). - PubMed
  31. Tang, W. H. W. et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 368, 1575–1584 (2013). - PubMed
  32. Romano, K. A. et al. Metabolic, epigenetic, and transgenerational effects of gut bacterial choline consumption. Cell Host Microbe 22, 279–290.e7 (2017). - PubMed
  33. Goodman, A. L. et al. Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe 6, 279–289 (2009). - PubMed
  34. Kageyama, A., Sakamoto, M. & Benno, Y. Rapid identification and quantification of Collinsella aerofaciens using PCR. FEMS Microbiol. Lett. 183, 43–47 (2000). - PubMed
  35. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012). - PubMed
  36. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). - PubMed
  37. Finn, R. D. et al. HMMER web server: 2015 update. Nucleic Acids Res. 43, W30–W38 (2015). - PubMed
  38. Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 39, W29–W37 (2011). - PubMed
  39. Almeida, A. et al. A new genomic blueprint of the human gut microbiota. Nature 568, 499–504 (2019). - PubMed
  40. Nayfach, S., Shi, Z. J., Seshadri, R., Pollard, K. S. & Kyrpides, N. C. New insights from uncultivated genomes of the global human gut microbiome. Nature 568, 505–510 (2019). - PubMed
  41. Zou, Y. et al. 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses. Nat. Biotechnol. 37, 179–185 (2019). - PubMed
  42. Bergeron, N., Chiu, S., Williams, P. T., M King, S. & Krauss, R. M. Effects of red meat, white meat, and nonmeat protein sources on atherogenic lipoprotein measures in the context of low compared with high saturated fat intake: a randomized controlled trial. Am. J. Clin. Nutr. 110, 24–33 (2019). - PubMed
  43. Lang, J. M. et al. Impact of individual traits, saturated fat, and protein source on the gut microbiome. mBio https://doi.org/10.1128/mBio.01604-18 (2018). - PubMed
  44. Bäckhed, F. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–703 (2015). - PubMed
  45. Cox, M. P., Peterson, D. A. & Biggs, P. J. SolexaQA: at-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinf. 11, 485 (2010). - PubMed
  46. Li, R., Li, Y., Kristiansen, K. & Wang, J. SOAP: short oligonucleotide alignment program. Bioinformatics 24, 713–714 (2008). - PubMed
  47. Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016). - PubMed
  48. McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013). - PubMed
  49. McMurdie, P. J. & Holmes, S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014). - PubMed
  50. Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Springer, 2009). - PubMed
  51. Benjamini, Y. Discovering the false discovery rate: false discovery rate. J. R. Stat. Soc. Ser. B Stat. Methodol. 72, 405–416 (2010). - PubMed
  52. maf167. The-microbial-gbu-gene-cluster-cardiovascular-disease: the-microbial-gene-cluster-gbu-CVD-custom-code-102721 (gbu-v2.0). Zenodo https://doi.org/10.5281/zenodo.5603090 (2021). - PubMed

Publication Types

Grant support